Semester	III	Corse Title	Engineering Mathematics-III	Course Code	18MAT-31
Teaching Period	50 Hours	L - T - P - TL	2 - 1 - 0 - 3	SEE	3 Hours
CIE	40 Marks	SEE	60Marks	Total	100 Marks
CREDITS - 03					

Course objectives:

- To have an insight into Fourier series, Fourier transforms, Laplace transforms, Difference equations and Z-transforms.
- To develop the proficiency in variational calculus and solving ODE's arising in engineering applications, using numerical methods.

:: Module-1 :(10 Hours)

Laplace Transforms: Definition and Laplace transform of elementary functions. Properties of Laplace transforms(without proof). Laplace transforms of Periodic functions (statement only) and unit-step function – problems.

Inverse Laplace Transforms: Inverse Laplace transform - problems, Convolution theorem to find the inverse Laplace transform (without proof) and problems, solution of linear differential equations using Laplace transforms. **RBTL – L1, L2**

:: Module-2 :: (10 Hours)

Fourier series: Periodic functions, Dirichlet's condition. Fourier series of periodic functions period 2π and arbitrary period 21. Fourier series of even and odd function. Half range Fourier series. Practical harmonic analysis, examples from engineering field.

RBTL –L1, L2

:: Module-3 :: (10 Hours)

Fourier Transforms: Infinite Fourier transforms, Fourier sine and cosine transforms. Inverse Fourier transforms, simple problems.

Difference Equations and Z-Transforms: Difference equations, basic definition, z-transform-definition, Standard z-transforms, Damping and shifting rules, initial value and final value theorems (without proof) and problems, Inverse z-transforms, simple problems.

RBTL –**L1**, **L2**

:: Module-4 :: (10 Hours)

Numerical Solutions of Ordinary Differential Equations (ODE's): Numerical solution of ODE's of first order and first degree- Taylor's series method, Modified Euler's method. Runge - Kutta method of fourth order, Milne's and Adam's- Bashforth predictor and corrector method (No derivations of formulae), Problems. **RBTL –L1, L2**

:: Module-5 :: (10 Hours)

Numerical Solution of Second Order ODE's: Runge -Kutta method and Milne's predictor and corrector method (No derivations of formulae)-Problems.

Calculus of Variations: Variation of function and functional, variational problems, Euler's equation, Geodesics, hanging chain, problems.

RBTL -L1,L3

L1-Understanding, L2-Remembering, L3-Applying.

Course outcomes:

At the end of the course the student will be able to:

- 1. CO1: Use Laplace transform and inverse Laplace transform in solving differential/integral equation arising in network analysis, control systems and other fields of engineering.
- 2. CO2: Demonstrate Fourier series to study the behavior of periodic functions and their applications in system communications, digital signal processing and field theory.
- 3. CO3: Make use of Fourier transform and Z-transform to illustrate discrete/continuous function arising in wave and heat propagation, signals and systems.
- 4. CO4: Solve first and second order ordinary differential equations arising in engineering problems by applying single step and multistep numerical methods.
- 5. CO5: Determine the extremals of functionals using the calculus of variations and solve problems arising in the dynamics of Rigid bodies and vibration analysis.

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of three sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module. The students will have to answer five full questions, selecting one full question from each module.

Textbooks

- 1. Advanced Engineering Mathematics, E. Kreyszing, John Wiley & Sons, 10th Edition, 2016.
- 2. Higher Engineering Mathematics, B.S. Grewal, Khanna Publishers, 44th Edition, 2017.

Reference Books

- 1. Higher Engineering Mathematics, B.V. Ramana, McGraw-Hill, 11th Edition, 2010.
- 2. A Text Book of Engineering Mathematics, N. P. Bali and Manish Goyal, Laxmi Publications, 2014.

module-01 Laplace transforms PAGE NO. Definition: If flt) is a real valued function defined for all t = 0 then the Laplace transform of fits denoted by L[fits] is defined by $\mathcal{L}[f(t)] = \int_{0}^{\infty} e^{-St} f(t) dt$ Provided the integral excepts. on integration of the indefinite integrale we will be having a function of Sand t. when this is evaluated between the dimits t=0 and t=00 we will be deft with a functi -on of 8 only and we shall denote it by F(S), where Sig a parameter, real or complex. Thus L[f(t)] = f(s) Equivalently coe can express this in the form and & called the inverse laplace torang form. $\bigwedge^{IOTES} \mathcal{L}[C,f,(t) \pm C_{g} f_{2}(t)] = C_{i} \mathcal{L}[f_{i}(t)] \pm C_{2} \mathcal{L}[f_{2}^{(H)}]$ where C, and G are constants Bernoulli's Rule $\int uv dx = uv_1 - u'v_2 + u''v_3 - u'''v_4 + \dots$ where u, u", u", u" are successive differentiation VI, V2, V3, V4 ... aje successive integrals of V. Scanned with CamScanner

where U= Svdx, V2= Sv, dx Example O Find L[f(t)] where f(t) = [t, oct 24 5, t>H e $\mathcal{B}_{\mathcal{A}}^{\mathcal{A}} \stackrel{n}{\to} \mathcal{L}[f(t)] = \int_{\mathcal{A}}^{\infty} e^{st} f(t) dt$ IJ $L[f(t)] = \int_{a}^{H} e^{st} f(t) dt + \int_{a}^{b} e^{st} f(t) dt$ Using the relevant f(t) in the integraly an $\mathcal{L}[f(t)] = \int_{a}^{H} e^{-St} t dt + \int_{a}^{\infty} e^{-St} 5 dt$ $= \int_{-\infty}^{\infty} t e^{-St} dt + 5 \int_{-\infty}^{\infty} e^{-St} dt$ chi Using Bernoulli's rule for the first 10 term in RHS we have, $\mathcal{L}[f(t)] = \left[\frac{t \cdot e^{-St}}{-S} - (1)\left(\frac{1}{-S}\right)\frac{e^{St}}{-S}\right]^{H} + 5\left[\frac{e^{St}}{-S}\right]^{\infty},$ $= -\frac{1}{S} \left[\frac{te^{-St}}{s} + \frac{e^{-St}}{s} \right]^{4} - \frac{5}{S} \left[\frac{e^{St}}{s} \right]^{6}$ $= -\frac{1}{s} \left[\frac{4e^{-4s} + \frac{e^{-4s}}{s^*} - \frac{1}{s^*} - \frac{1}{s^$ (+) $= \frac{-1}{s} \left[\frac{4e^{-4s}}{s} + \frac{e^{-4s}}{s} - \frac{1}{s} - \frac{5}{s} \right] - \frac{5}{s} \left[0 - e^{-4s} \right]$ $= -\frac{He^{-HS}}{S} - \frac{e^{-HS}}{S^{2}} + \frac{L}{S^{2}} + \frac{5e^{-HS}}{S}$ a tion $\lambda[f(H)] = \frac{e^{HS}}{s} + \frac{1}{s^{2}} \left(1 - e^{HS}\right) / \frac{1}{s^{2}}$

(a) Find L[f(t)] if $f(t) = \begin{cases} \sin 2t + \cos 2t + t \\ \cos 2t + \cos 2t \\ \sin 2t \\$ $\mathcal{S}_{\mathcal{O}}^{\circ} \mathcal{L}[flt] = \int_{\mathcal{O}}^{\mathcal{O}} \mathcal{S}_{\mathcal{O}}^{\mathcal{S}_{\mathcal{O}}} flt) dt$ $L[f(t)] = \int_{0}^{\infty} e^{St} f(t) dt + \int_{0}^{\infty} e^{St} f(t) dt$ $= \int_{-\infty}^{\infty} e^{-St} \sin 2t \, dt + \int_{-\infty}^{\infty} e^{-St} o \, dt$ $\omega \cdot k \cdot T \int e^{at} \operatorname{Sinbt} dt = \frac{e^{at}}{a^2 + b^2} \left(\operatorname{asinbt} - b \cos bt \right)$ $= \left[\frac{e^{-St}}{(-S)^{2}+2^{2}} \left(-SSin2t - 2COS2t\right)\right]^{''} + 0$ $= \frac{-1}{s^{2} + 4} \left[e^{-St} (+SSin 2t + 200.82t) \right]$ $= \frac{-1}{S^{2}+H} \left[e^{-S\pi} (SSin 2\pi + 2\omega 82\pi) - e^{\circ} (SSin 2\pi + 2\omega 82\pi) - e^{\circ} (SSin 2\pi) + 2\omega 82\pi \right]$ \$10217 =0=Sino CO82TT =1 =5080 $= \frac{-1}{s^{2} + H} \left[e^{ST} (0 + 2(1)) - (1) (0 + 2(1)) \right]$ $= \frac{-1}{S^{2}+4} \left[e^{-ST}(2) - 2 \right]$ $= \frac{-2}{s^2 + 4} \left[e^{S \pi} - i \right] = \frac{2}{s^2 + 4} \left[1 - e^{S \pi} \right]$

 $\therefore L[f(t)] = \frac{2}{S^2 + H} \left[1 - e^{ST} \right]$ Laplace transform of elementary functions OL(a) where a is constant $\mathcal{L}[\mathcal{F}(\mathcal{H})] = \mathcal{L}(a) = \int_{D}^{\infty} e^{-St} \mathcal{F}(\mathcal{H}) dt$ = $\int_{e}^{\infty} e^{st} a dt$ $= \alpha \left[\frac{e^{-St}}{-S} \right]^{\omega}$ $= \alpha \left[e^{-St} \right]_{0}^{\infty}$ $= \frac{\alpha}{1-s} \left[\frac{e^{-\omega}}{e^{-\omega}} - \frac{e^{-\omega}}{e^{-\omega}} \right]$ = 9/s [0-i] L(a) = a, where \$>0 === 1, g. L(1) = 1/s If a=2, L [2] = 2/5 If a=100, L[100] = 100 @ L(eat) $\mathcal{L}[\mathcal{F}(\mathcal{H})] = \int_{0}^{\infty} e^{-St} \mathcal{F}(\mathcal{H}) dt$ $L[e^{at}] = \int_{0}^{\infty} e^{-St} e^{at} dt$ $= \int_{e}^{\infty} e^{-(s-a)t} dt$

(a)
$$\mu(\sinh at) = \lambda(\frac{e^{at} - e^{-at}}{2})$$

 $= \frac{1}{2} \left\{ \frac{1}{2} - a - \frac{1}{2} - \frac{1}{2} \right\}$
 $= \frac{1}{2} \left\{ \frac{1}{2} - a - \frac{1}{2} - \frac{1}{2} \right\}$
 $= \frac{1}{2} \left\{ \frac{1}{2} - a - \frac{1}{2} - \frac{1}{2} \right\}$
 $= \frac{1}{2} \left\{ \frac{1}{2} - a^{-\frac{1}{2}} - \frac{1}{2} - \frac{1}{2} \right\}$
 $= \frac{1}{2} \left\{ \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right\}$
 $= \frac{1}{2} \left\{ \frac{1}{2} \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right\}$
 $= \frac{1}{2} \left\{ \frac{1}{2} \frac{1}{2} - \frac{1$

Using $\int e^{at} \cos bt \, dt = \frac{e^{at}}{a^2 + b^2} \left[a \cos bt + bs inbt \right]$ $L(cosat) = \left[\frac{e^{-St}}{(-S)^2 + a^2} \left(-\frac{Scosat}{(-S)^2 + a^2} + \frac{aSinat}{(-S)^2 + a^2}\right)\right]_{t=0}^{\infty}$ $= \frac{1}{S^2 + a^2} \left[e^{-St} \left(-SCO_8 at + asinat \right) \right]_{+-\infty}^{+-\infty}$ $= \frac{1}{s^{2} + a^{2}} \left[0 - c^{0} \left(- S \cos(0) + a \sin(0) \right) \right]$ $=\frac{1}{S^{2}+a^{2}}+S(1)-0$ $L\left[\cos 3at\right] = \frac{8}{8^2 + a^2} \quad cohere \quad 8>0$ \mathscr{O} $\mathcal{L}(sinat)$ $\mathcal{L}(sinat) = \int_{0}^{\infty} e^{st} \cdot sinat dt$ wing, $\int e^{at} gin bt dt = \frac{e^{at}}{a^2 + b^2} (asinbt - bcogbt)$ $L(sinat) = \underbrace{\frac{e^{st}}{(-s)^2 a^2}}_{(-s)^2 a^2} (-ssinat - acosat) \right]^{\infty}$ $L(sinot) = -\frac{1}{s^2 t a^2} \left[e^{-St} (ssinat + acosat) \right]^{10}$ $= \frac{-1}{s^{2} + a^{2}} \left[0 - e^{\circ} (ssin(0) + a\cos(0)) \right]$ $= \frac{1}{g^2 + a^2} \left[O\left(O + a\right) \right] = \lambda \left(\text{Sinat} \right) = \frac{a}{g^2 + a^2}$

D L(t) = ((n+1), where n y constant Sn+1, where n y constant WX.T (CON+1)= n], if ny a tye integer L(t)=n!, It n is a tue integer Table of Caplace transform 8 \$ (t) [f (t)] = \$ (S) $\mathcal{A}[f(t)] = \tilde{f}(s)$ flt) % $\frac{a}{S^2 - a^2}$ 5 Sinhat 1. a 2. eat Sinat 6 $\frac{a}{s^2 + a^2}$ 1/s-a 3 coshat 5 - a2 7 th <u>ren+1</u> S 52+a2 tn 4. cosat 8 n! cn+1 n=1,2,3.... D Find the Laplace transform of the problem & O cosh'at Son° ut, $f(t) = cosh^2 3t = (cosh3t)^2$ $f(t) = \left[\underbrace{e^{3t} + e^{-3t}}_{2} \right]^2$ #aty =1×4, [63+37 +(E37)] F Ry Lett fle 154 $f(t) = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2}$ L> (a+b)

FAGE NO. DATE $= \chi \left[e^{bt} + e^{-6t} + 2e^{3t} e^{-3t} \right]$ $= \chi_{4} \left[e^{6t} + \overline{e}^{6t} + \partial e^{3t} - 3t \right]$ = X4[e^{6t} + e^{6t} + 2e°] $f(t) = \chi_{1} \int e^{6t} + e^{-6t} + 2 \int$ $\mathcal{L}[f(t)] = \mathcal{Y}_{H} \mathcal{L}[e^{6t} + e^{-6t} + 2]$ $= \gamma_{4} \left\{ L(e^{6t}) + L(e^{-6t}) + L(2) \right\}$ $L[f(t)] = \lambda_{4} \left\{ \frac{1}{5-6} + \frac{1}{5+6} + \frac{2}{5} \right\}$ Doyourself * Sinh at @ Eatsinhat Sono det, $f(t) = e^{\partial t} sinhHt$ $\omega \cdot \kappa \cdot \tau$ Sinht = $e^{t} - e^{t}$ $SinhHt = e^{Ht} - e^{Ht}$ $f(t) = \bar{e}^{2t} \sinh \mu t = \bar{e}^{2t} \left[\frac{e^{\mu t} - \bar{e}^{\mu t}}{2} \right]$

 $= \frac{1}{2} \left[e^{-2t} e^{Ht} - e^{2t} e^{-4t} \right]$ $= \frac{1}{2} \left[e^{2t} - e^{-6t} \right]$ $f(t) = \frac{1}{2} \left[e^{2t} - e^{-6t} \right]$ $\mathcal{L}[\mathcal{L}(t)] = \frac{1}{2} \left[\mathcal{L}(e^{2t}) - \mathcal{L}(e^{-6t}) \right]$ = Y2 5-2 - 3+6 $= \frac{1}{2} \left[\frac{(S+6) - (S-2)}{(S-2)(S+6)} \right]$ $= \frac{1}{2} \left[\frac{g+6-g+2}{(s-2)(s+6)} \right]$ $= \frac{1}{2} \left[\frac{-84}{(S-2)(S+6)} \right]$ $L[f(t)] = \frac{4}{(S-2)(S+6)}$ 3) Sin 5t. Cos 2t $\int_{\infty}^{\infty} \int_{0}^{\infty} det f(t) = Sinst Co.82t$ W.K.T SINACO8B = 1/2 {SINCA+B) + SINCA-B)} $f(t) = y_2 \left[Sin(5t+at) + Sin(5t-2t) \right]$ $f(t) = \frac{1}{2} \left[\sin 7t + \sin 3t \right]$ $d[f(t)] = \frac{1}{2} \left[L(sinft) + L(sinft) \right]$

 $to: k:T L[sinat] = \frac{a}{s+a^2}$ $L[f(t)] = \chi \left[\frac{1}{s^2 + f^2} + \frac{3}{s^2 + 3^2}\right]^{\frac{1}{1001}}$ $\mathcal{L}[f(t)] = \frac{1}{2} \left[\frac{7}{s^2 + 49} + \frac{3}{s^2 + 9} \right]$ Dune Cost cosat cosat 2018 Soine det fit) = Cost cosat cosat UO.K.T $COSACOSB = \frac{1}{2} \left[COS(A+B) + COS(A-B) \right]$ $Cost cos 2t = \frac{1}{2} \left[cos(t+2t) + cos(t-2t) \right]$ = 1/2 [cos3t + costt)] = > [CO83t + CO8t] $\therefore COStCOS2tCOS3t = \frac{1}{2} \left[COS3t + COSt \right] COS3t$ $= Y_{g} \left[\cos_{3t} \cos_{3t} + \cos_{t} \cos_{3t} \right]$ $= \frac{1}{2} \left[\frac{1}{2} \left[\cos(3t + 3t) + \cos(3t - 3t) \right] + \frac{1}{2} \left[\cos(t + 3t) + \cos(t - 3t) \right] \right]$ $= \frac{1}{2} \times \frac{1}{2} \left(\cos 86t + \cos 80 \right) + \left(\cos 84t + \cos 86t \right)$ flt) = 1/4 CO86t + 1 + CO84t + CO82t $L[f(t)] = \frac{1}{4} \left[L[cog6t] + L[i] + L[cog9t] + L[cog9t] \right]$ $\omega \cdot k \cdot T \quad \mathcal{L}\left[\cos(\alpha t)\right] = \frac{\vartheta}{\vartheta + \alpha^2}, \quad \mathcal{L}\left[\alpha\right] = \frac{\vartheta}{\vartheta}$

= 1/4 52+62 + 1 + 5 + ST + ST + ST + 2 Trade HO DATE2 + 22 $\left[\frac{1}{10}\right] = \frac{1}{16} \left[\frac{s}{s^2 + 36} + \frac{1}{s} + \frac{s}{s^2 + 16} + \frac{s}{s^2 + 4}\right]$ 3 Sin2 (22+1) \$010 Let flt)=Sin2 (2t+1) W.K.T Sin20 = 1-00,20 $f(t) = sin^2(2t+i)$ ドイ・ション (加大 差) = 1/2 [1- cos(Ht+2)] = 1/2 [1-[cosHt cos2 - SinHt Sin2] $f(t) = \frac{1}{2} \left[1 - \cos(t \cos 2) + \sin(t \sin 2) \right]$ $4[f(t)] = \frac{1}{2} \left[L(1) - L(cosut) cos 2 + Sin 2 L(Sinut) \right]$ $= \frac{1}{3} \left[\frac{1}{5} - \frac{5}{5^2 + 4^2} - \frac{5}{5^2 + 4^2} - \frac{5}{5^2 + 4^2} - \frac{5}{5^2 + 4^2} \right]$ $\sqrt{[f(t)]} = \frac{1}{2} \left[\frac{1}{5} - \frac{G \cdot \cos 2}{5^2 + 16} + \frac{H \sin 2}{5^2 + 16} \right]$ EINTE S MILL

Nova @ (3t+4)³+5^t PAGE NO. DATE 80/0 Let P(t) = (3t+4) + 5t $\omega \cdot k \cdot \tau \ (a+b)^3 = a^3 + b^3 + 3a^2b + 3ab^2$ $(3t+H)^{3} = (3t)^{3} + H^{3} + 3(3t)^{2}(H) + 3(3t)(H)^{2} + e^{1095}t$ = 27t3+64 + 108t2+144t + e 1095.t $d\left[(3t+4)^{3}\right] = 27d\left[t^{3}\right] + d\left[64\right] + 108l\left[t^{2}\right] + 1uud\left[t\right]$ $= 27 \frac{3!}{5^4} + \frac{64}{5} + \frac{108}{5} \frac{2!}{c^3} + \frac{100}{3^7}$ $\widehat{F}(t) = 3\sqrt{t} + \frac{4}{\sqrt{t}} = \frac{162}{5^4} + \frac{216}{5^3} + \frac{109}{5} + \frac{1}{5^{-1095}} + \frac{109}{5} + \frac{100}{5} + \frac{100}{5}$ $f(t) = 3t^{y_2} + H_{/t}^{y_2}$ flt) = 3t /2 + Ht - 1/2 $\omega \cdot \kappa \cdot \tau = \lambda(t^n) = \frac{\Gamma(n+1)}{n+1}$ $\mathcal{J}[\mathcal{F}(\mathcal{H})] = \mathcal{J}[3\mathcal{H}^2] + \mathcal{J}[\mathcal{H}\mathcal{H}^{1/2}]$ $= 3 d [t^{Y_2}] + 4 d [t^{Y_2}]$ $= 3 \left[\frac{\Gamma(y_2+1)}{S^{y_2+1}} \right] + 4 \left[\frac{\Gamma(-y_2+1)}{S^{y_2+1}} \right]$ $L[F(H)] = 3 \frac{\Gamma(3/2)}{S^{3/2}} + 4 \frac{\Gamma(Y_2)}{S^{Y_2}}$ $\Gamma(Y_{2}) = \sqrt{\pi}, \Gamma(3/_{2}) = \frac{1}{\sqrt{2}}\Gamma(X_{2}) = \frac{1}{\sqrt{2}}\sqrt{\pi}$ $\mathcal{L}[f(t)] = 3 \frac{\frac{1}{2}}{\frac{3}{2}} + H \frac{1}{\sqrt{2}}$

= 3 11 + 411 - 312 = 3/ SX2 S + 41/17 SX2 SX2 SX2 = VF 3 + 4 $\sqrt{f(H)} = \sqrt{\frac{\pi}{5}} \left[\frac{3}{25} + H\right]$ properties of Laplace transforms $If L[f(t)] = \bar{f}(s) then L[e^{\alpha t} f(t)] = \bar{f}(s-\alpha)$ @ 24 L[\$ (t)] = 7 (S), then $L[t^{n}f(t)] = (-1)^{n} \frac{d^{n}}{ds^{n}} [\bar{f}(s)] \quad \text{where } n is \alpha$ $+ ue \text{ integer } I_{n} parkicular + [\bar{t}f(t)] = -\frac{d}{ds} [\bar{f}(s)]$ $+ ue \text{ integer } J[t^{*}f(t)] = \frac{d}{ds} \cdot [\bar{f}(s)]_{b}$ $= \int f(s) \, ds$ $= f(s), \text{ then } L[f(t)] = \int f(s) \, ds$ Problem 8 Eind the Loplace transform of the following functions 0 e2t (20085t - Sinst) Solo Let flt) = 20085t - Sin5t L[f(t)] = 2 L[cosst] - L[sinst] $= 2. \frac{3}{s^2 + 5^2} - \frac{5}{s^2 + 5^2}$ $\mathcal{L}[f(t)] = \frac{2S-5}{S^2+5^2}$

FAGE NO. $\mathcal{L}\left[e^{-2t}\mathcal{F}(t)\right] = \begin{cases} \frac{2S-5}{S+25} \\ \frac{S+25}{S+25} \\ \frac{S+25}{S+25} \end{cases}$ DATE (S+2)2+2 = 25+4-5 $S^{2}+2^{2}+4S+25$ $\mathcal{L}\left[e^{-2t}f(t)\right] = \frac{2S-1}{S^2 + 4S + 29}$ $\mathcal{L}\left[\bar{e}^{2t}\left(2\cos 5t - \sin 5t\right)\right] = \frac{2S-1}{S^2 + 4S + 29}$ @ et cosist $\frac{30^{n0}}{\sqrt{3}} \omega \kappa \tau \cos^2 t = \frac{1+\cos^2 t}{2}$ flt) = COB3t = 1+ COB6t $d\left[f(t)\right] = d\left[\frac{1+cos6t}{2}\right]$ = 1/2 ~ [1+ C 0,86t] = 1/2 { ~ [·] + ~ [cos6t] } = 1/2 / 3 + 5 -2 $d[f(t)] = \frac{1}{2} \left[\frac{1}{5} + \frac{5}{5^2 + 36} \right]$ $2\left[e^{-t}\cos^{2}_{3}t\right] = \frac{1}{2}\left[\frac{1}{5} + \frac{9}{5^{2}+36}\right]_{S \to S \neq 1}$ $\mathcal{L}\left[\bar{e}^{t}\cos^{2}_{3}t\right] = \frac{1}{2}\left[\frac{1}{5+1} + \frac{5+1}{(5+1)^{2}+36}\right]$

3 (1+3te2t)2 solo ket flt) = (1+3te^{2t})² PAGE NO. DATE 1 USe (a+b) = a2+b2+2ab $(1+3te^{2t})^{2} = 1 + (3te^{2t})^{2} + 2CI)(3te^{2t})$ $(1+3te^{2t})^{2} = 1+9t^{2}e^{4t} + 6te^{2t}$ $\mathcal{L}[\mathcal{F}(t)] = \mathcal{L}[1+9t^2e^{ut}+6te^{2t}]$ $= \lambda \mathcal{E} \mathcal{I} + 9 \lambda \mathcal{E} \mathcal{E}^{4t} \mathcal{E}^2 \mathcal{I} + 6 \lambda \mathcal{E} \mathcal{E}^{2t} \mathcal{I}$ - +9 2[t²]_{S→S-H} +6 d[t]_{S→S-2} But $d(t) = \frac{1}{5^2} d(t^2) = \frac{2}{5^3}$ $\frac{1}{5^2} \frac{1}{5^2} \frac{1}{5^2} \frac{1}{5^2} \frac{1}{5^3} \frac$ $\mathcal{L}[c_{1}+3te^{2t}]^{2}] = \frac{1}{5} + 9 \cdot \frac{2}{(S-H)^{3}} + \frac{6}{(S-2)^{2}}$ $d\left[(1+3te^{2t})^{2}\right] = \frac{1}{5} + \frac{18}{(5-4)^{3}} + \frac{6}{(5-2)^{2}}$ (A) Sinhat Sinat Soine flt) = Sinhat Sinat $f(t) = e^{at} - \bar{e}^{at}$ Sinat $f(t) = \gamma_2 \left(e^{at} g_{inat} - \bar{e}^{at} g_{inat} \right)$ +[+11]= 1/2 { L[sinat] => S-a - 2[sinat] s> s+a? But $d [sinat] = \frac{q}{d+q^2}$ = $\frac{1}{2} \int \frac{a}{(s-a)^2 + a^2} - \frac{a}{(s+a)^2 + a^2}$ $= \frac{1}{2} \begin{cases} \frac{q}{s^2 + a^2 - 2as + a^2} - \frac{q}{s^2 + a^2 + 2as + a^2} \end{cases}$

$$= a_{3}^{2} \left\{ \frac{1}{s^{2} + 2a^{2} - 2aS} + \frac{1}{s^{2} + 2a^{2} + 2aS} \right\}$$

$$= a_{3}^{2} \left\{ \frac{(s^{2} + 2a^{2} + 2aS) - (s^{2} + 2a^{2} - 2aS)}{(s^{2} + 2a^{2} - 2aS) (s^{2} + 2a^{2} - 2aS)} \right\}$$

$$= a_{3}^{2} \left\{ \frac{(aS)}{(s^{2} + 2a^{2} - 2aS) (s^{2} + 2a^{2} + 2aS)} \right\}$$

$$= a_{3}^{2} \left\{ \frac{aaS}{(s^{4} + ua^{4})} \right\}$$

$$= a_{3}^{2} \left\{ \frac{aaS}{(s^{3} + ua^{3})} \right\}$$

$$= a_{3}^{2} \left\{ \frac{aaS}{(s^{3} + ua^{3})} \right\}$$

$$= a_{3}^{2} \left\{ \frac{aaA}{(s^{3} + ua^{3})} \right\}$$

S = X4 2 68+246 - 68-24 } PAGE NO. DATE 1 1 DATE 1 1 = X4 2(5+4)(5+30) - 48 (s2+4)(s+36) NOW, $d(\cosh t \sin^3 2t) = d\left[\frac{e^t + e^t}{2}\sin^3 2t\right]$ $= \frac{1}{2} \left\{ L\left[e^{t}.Sin^{3}2t\right] + d\left[e^{t}.Sin^{3}2t\right] \right\}$ = $\frac{1}{2} \int d[\sin^3 2t]_{S \to S - 1} + d[\sin^3 2t]_{S \to S + [1]}$ $= \frac{1}{2} \left[\frac{48}{(3-1)^{2}+H} ((3-1)^{2}+36) + \frac{48}{(3+1)^{2}+4} ((3+1)^{2}+36) \right]$ $= \frac{1}{9} \left[\frac{1}{(9-1)^{2}+36} + \frac{1}{(9+1)^{2}+36} \right] + \frac{1}{(9+1)^{2}+4} \left(\frac{1}{(9+1)^{2}+36} \right) \right]$ $= 24 \left[\frac{1}{(s^2 - 2s + 5)(s^2 - 2s + 37)} + \frac{1}{(s^2 + 2s + 5)(s^2 + 2s + 37)} \right]$ Find the Loplace transform of the following functions tcosat 0 2018 Soin: Ket flt) = cosat Dec $\lambda \left[f(t) \right] = \frac{s}{s^2 + a^2}$

Now $d[tf(t)] = (-i) \frac{d}{ds} [\bar{f}(s)] = ($ $d[t cosat] = -\frac{d}{ds} \left[\frac{s}{s^2 + a^2} \right]$ $= - \left\{ \frac{(s^2 + a^2)(1) - S(as)}{(s^2 + a^2)^2} \right\}$ $= - \left\{ \frac{s^2 + a^2 - 2s^2}{(s^2 + a^2)^2} \right\}$ 1 Fet sines JE $(32+(1+2))(1+(1+2)) = 1-2 \frac{\alpha^2-3^2}{(\alpha^2+\alpha^2)^2} = \frac{814}{(\alpha^2+\alpha^2)^2}$ $\mathcal{L}[t\cos \alpha t] = \frac{S^2 - \alpha^2}{\left(S^2 + \alpha^2\right)^2} /$ @ Isinat Soine let F(t) = sinat d[f(t)] = d[sinat]NOW $d \left[\frac{1}{2} f(t) \right] = f \frac{d^2}{ds^2} \left[\overline{f}(s) \right]$ $= \frac{d^2}{ds^2} \left[\frac{a}{s^2 + a^2} \right]$

 $= \frac{d}{ds} \left(\frac{d}{ds} \left(\frac{a}{s^2 + a^2} \right) \right)$ PAGE NO. DATE $= \frac{d}{ds} \left\{ \frac{(s^2 + a^2)(0) - \alpha(as)}{(s^2 + a^2)^2} \right\}$ $=\frac{a}{as}\left\{\frac{-aas}{(s^2+a^2)^2}\right\}$ = $\left(\frac{s^2+a^2}{(-2a)+1}\right)^2 a S\left(\frac{2(s^2+a^2)(2s)}{2}\right)^2$ $\left(\left(s^2+a^2\right)^2\right)^2$ $= (3^{2} + a^{2}) 2a f((3^{2} + a^{2}) + 43s]^{2}$ (s'Fa') 4 1[isinat]= 20000000 {-(s2+a2)+HS2} (s2+a2)2 $2a\{-s^2-a^2+us^2\}$ $(s^2+a^2)^2$ $= \frac{2a\{3s^2 - a^2\}}{(s^2 + a^2)^2}$

3) \$ sint +1+) = sint - (1+2) \$ (+15) $\sum_{i=1}^{n} \sum_{j=1}^{n} \left[\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum$ $d[f(t)] = \frac{1}{s^2 + 1}$ $NOW, d[t^3 f(t)] = (-1)^3 \frac{d^3}{ds^3} [\bar{f}(s)](1+2)]$ $=(-1)^{3}\frac{d^{3}}{ds^{3}}\left[\frac{1}{s^{2}+1}\right]^{-\frac{6}{3}}$ $= -\frac{d^2}{ds^2} \left[\frac{d}{ds} \left(\frac{1}{s^2 + 1} \right) \right]$ $\frac{d^{2}}{ds^{2}}\left[\frac{(s^{2}+i)(o)-(1)(2s)}{(s^{2}+i)^{2}}\right]$ $\left(\frac{1}{1}\right) = -\frac{d^2}{ds^2} \left[-\frac{2S}{(s^2+1)^2} \right]$ = + $\frac{d}{ds} \left[\frac{d}{ds} \left(\frac{\partial S}{(S^2 + 1)^2} \right) \right]$ $= \frac{d}{ds} \left[\frac{(s^2+1)^2(s) - 2s(2(s^2+1)(s))}{((s^2+1)^2)^2} \right]$ $= \frac{d}{ds} \frac{(s^{4}+1+as^{2})(a)-8s^{2}(s^{2}+1)}{(s^{2}+1)^{4}}$ $= \frac{d}{ds} \left[\frac{2s^4 + 2 + 4s^2 - 8s^4 - 8s^2}{(s^2 + 1)^4} \right]$ $= \frac{d}{ds} \left[\frac{-6s^4 - 4s^2 + 2}{(s^2 + 1)^4} \right]$

 $= \frac{d}{ds} \left[\frac{(\vec{s}+1)}{(\vec{s}+1)} \frac{2(\vec{s}+1)}{(\vec{s}+1)^4} \right]$ $= \frac{d}{ds} \left[\frac{2s^{2} + 2 - 8s^{2}}{(s^{2} + 1)^{3}} \right]$ $= \frac{d}{ds} \left[\frac{\partial}{(s^2+1)^3} - \frac{\partial}{\partial s} \right] = \left[\frac{\partial}{\partial s} \right] =$ $= 2 \frac{d}{ds} \left[\frac{1+3s^2}{(s+1)^3} \right] = b \left[\frac{b}{b} - \frac{s}{s} \right]$ $= \Im \left\{ \frac{(s^{2}+1)^{3}(0-6s) - (1-3s^{2})(3(s^{2}+1)^{2}(3s))}{((s^{2}+1)^{3})^{2}} \right\}$ $= 2 \int (s^{2} + 1)^{3} (-6s) - 6s (1 - 3s^{2}) (s^{2} + 1)^{2} \Big($ $= 9 \left\{ (5+1)^{2} \left\{ -6 S (5^{2}+1) - 6 S (1-3 S^{2}) \right\} \right\}$ $\left\{ (5^{2}+1)^{6} \right\}$ $= 2 \left\{ -\frac{65}{(s^2 + 1)^4} - 3s^2 \right\}$ $-\frac{12S(2-2S^{2})}{(S^{2}+1)^{4}} \rightarrow \sqrt{[t^{3}f(t)]^{2}} = 2^{uS(S^{2}-1)} \frac{1}{(S^{2}+1)^{4}} \rightarrow \sqrt{[t^{3}f(t)]^{2}} = 2^{uS(S^{2}-1)} \frac{1}{(S^{2}+1)^{4}}$

() tocosht Soine det flt) = t cosht Note: Here we should not prefer to work the Type problem 1114 to previous, since we have coght with cohich can be converted to <u>cttet</u> so that it will be highly convenient 2 to apply the Shifting property. $f(t) = t^3 \left(\frac{c^t + \bar{c}^t}{2} \right)^{c_1}$ 2 Fegut coshat = 12 $f(t) = \chi_{3} \left\{ e^{t} \cdot t^{3} + e^{-t} \cdot t^{3} \right\} \xrightarrow{\text{ye}} ye p^{\text{oropenty}} (t)$ $d[flt] = \frac{1}{2} \left\{ d[t^3]_{S-S-1} = \frac{1}{2} \left\{ d[t^3]_{S-S-1} \right\} = \frac{1}{2} \left\{ d[t^3]_{S-S-1} \right\}$ $w \cdot k \cdot \tau \quad d [t^{h}] = \frac{n!}{s^{n+1}} \cdot d [t^{3}] = \frac{3!}{s^{3+1}} = \frac{6}{s^{4}}$ $d[f(t)] = \frac{1}{5} \frac{6}{(S-1)^4} + \frac{6}{(S+1)^4} \int_{t=0}^{t+1} [t]$ = 6/2 { (S-1)4 2 (S+ 04) [tune 19]] $2[f(t)] = 3\{(s-1)^{4}, (s+2)^{4}\}$ (a) $t^5 e^{Ht} cosh3t$ $5 e^{$ $f(t) = t^{5} e^{ut} \int e^{st} + e^{-3t} \int = [there e^{st}]$ $f(t) = \frac{e^{\mp t} t^5 + e^{t} t^5}{2}$ $f(t) = \frac{1}{2} \left\{ e^{\mp t} t^5 + e^{t} t^5 \right\}$ $f(t) = \frac{1}{2} \left\{ e^{\mp t} t^5 + e^{t} t^5 \right\}$ $f(t) = \frac{1}{2} \left\{ e^{\mp t} t^5 + e^{t} t^5 \right\}$ $f(t) = \frac{1}{2} \left\{ e^{\mp t} t^5 + e^{t} t^5 \right\}$ $f(t) = \frac{1}{2} \left\{ e^{\mp t} t^5 + e^{t} t^5 \right\}$ $f(t) = \frac{1}{2} \left\{ e^{\mp t} t^5 + e^{t} t^5 \right\}$

 $\omega \cdot \kappa \cdot \tau \perp [t^n] = \frac{n!}{s^{n+1}}$ $k [t^{5}] = \frac{5!}{5^{5+1}}$ $d [t^{5}] = \frac{120}{5^{6}}$ (20) $\mathcal{L}\left[t^{5}e^{ut}\cosh 3t\right] = \frac{1}{2} \begin{cases} \frac{120}{(s-7)^{6}} + \frac{120}{(s-1)^{6}} \end{cases}$ $= \frac{130}{3} \left\{ \frac{1}{(S-7)6} + \frac{1}{(S-1)^6} \right\}$ $2\left[t^{5}e^{4t}co8h3t\right] = 60\left\{\frac{1}{(s-2)^{6}} + \frac{1}{(s-2)^{6}}\right\}$ X = TOUTS $\mathcal{L}[sinut] = \frac{4}{c^2 + 16} (1+2)^4 + \frac{1}{c^2 - 2} \left[c_1 + 1 \right]$ $\therefore d \left[e^{2t} \operatorname{sinut} \right] = \left[\frac{H}{s^2 + 16} \right] s \rightarrow s + 2$ =" <u>4</u> (S+2)²+16 (S+2)²+16 $J\left[e^{2t}sinut\right] = \frac{H}{s^{2}+u+Hs+16}$ is dealers the state of the $d\left[e^{-2t}sinut\right] = \frac{4}{c^2 + 4s + 20} = (+)$ $\mathcal{L}\left[ze^{-2t}sinut\right] = -\frac{d}{ds}\left[\frac{4}{s^2+uS+20}\right] = 0$ $\frac{1}{(s^2+us+20)(0)-u(2s+u)} = - \left\{ \frac{(s^2+us+20)(0)-u(2s+u)}{(s^2+us+20)^2} \right\}$

$$= \frac{\mu(2S+\mu)}{(S^{2}+\mu S+20)^{2}}$$

$$= \frac{g(2S+2)}{(S^{2}+\mu S+20)^{2}}$$

$$= \frac{g(2S+2)}{(S^{2}+\mu S+20)^{2}}$$

$$= \frac{g(2S+2)}{(S^{2}+\mu S+20)^{2}}$$

$$\int_{0}^{\infty} (\omega \cdot \kappa \cdot T) \int_{0}^{\infty} e^{-St} f(t) dt = d[f(t)]$$

$$\int_{0}^{\infty} e^{-St} \frac{t^{3}}{s} (sint) dt = d[f^{2}(sint)] = 0$$

$$\int_{0}^{\infty} (\omega \cdot \kappa \cdot T) \int_{0}^{\infty} e^{-St} f(t) dt = d[f^{2}(sint)], f(t) = 0$$

$$\int_{0}^{\infty} e^{-St} \frac{t^{3}}{s} (sint) dt = d[f^{3}(sint)] = \frac{1}{s^{2}+1}$$

$$\int_{0}^{\infty} e^{-St} \frac{t^{3}}{s^{2}(sint)} dt = d[f^{3}(sint)] = \frac{1}{s^{2}+1}$$

$$\int_{0}^{\infty} e^{-St} \frac{t^{3}}{s^{3}(sint)} dt = d[f^{3}(sint)] = \frac{1}{s^{3}+1}$$

$$\int_{0}^{\infty} e^{-St} \frac{t^{3}}{s^{3}(sint)} dt = d[f^{3}(sint)] = \frac{1}{s^{3}(sint)} dt = d[f^{3}(sint$$

 $= 2 \frac{d}{ds} \left\{ \frac{s^2 + 1 - us^2}{(s^2 + 1)^3} \right\} = \frac{(u+2s)}{(s^2 + 1)^3}$ $= 2 \frac{d}{ds} \left\{ \frac{1 - 3s^2}{(s^2 + 1)^3} \right\}^{-(\alpha + 2)}$ $= 2 \left\{ \frac{(s^{2}+1)^{3}(-6s) - (1-3s^{2})(3(s^{2}+1)^{2}(2s))}{((s^{2}+1)^{3})^{2}} \right\}$ $= 2 \left\{ (3^{2}+1)^{2} (-6S) \left\{ \frac{(3^{2}+1) + (1-3S^{2})}{(S^{2}+1)^{6}} \right\} \right\}$ 1-7 = 19363 7 408 $\left\{ \begin{array}{c} 0 \\ = \\ -125 \\ \end{array} \right\} \left\{ \begin{array}{c} -25^{2} + 2 \\ (5^{2} + 1)^{4} \\ \end{array} \right\} \left\{ \begin{array}{c} 0 \\ = \\ \end{array} \left\{ \begin{array}{c} 0 \\ \end{array} \right\} \left\{ \begin{array}{c} 0 \\ = \\ \end{array} \left\{ \begin{array}{c} 0 \\ \end{array} \right\} \left\{ \begin{array}{c} 0 \\ \end{array} \right\} \left\{ \begin{array}{c} 0 \\ \end{array} \left\{ \begin{array}{c} 0 \\ \end{array} \right\} \left\{ \begin{array}{c} 0 \\ \end{array} \right\} \left\{ \begin{array}{c} 0 \\ \end{array} \right\} \left\{ \begin{array}{c} 0 \\ \end{array} \left\{ \begin{array}{c} 0 \\ \end{array} \right\} \left\{ \begin{array}{c} 0 \\ \end{array} \left\{ \begin{array}{c} 0 \\ \end{array} \right\} \left\{ \begin{array}{c} 0 \\ \end{array} \right\} \left\{ \begin{array}{c} 0 \\ \end{array} \left\{ \begin{array}{c} 0 \\ \end{array} \right\} \left\{ \begin{array}{c} 0 \\ \end{array} \right\} \left\{ \begin{array}{c} 0 \\ \end{array} \right\} \left\{ \left\{ \begin{array}{c} 0 \\ \end{array} \right\} \left\{ \left\{ \begin{array}{c} 0 \end{array} \right\} \left\{ \left\{ \end{array}\right\} \left\{ \left\{ \end{array}\right\} \left\{ \left\{ \begin{array}{c} 0 \end{array} \right\} \left\{ \left\{ \end{array}\right\} \left\{ \left\{ \end{array}\right\} \left\{ \left\{ \left\{ \end{array}\right\} \left\{ \left\{ \end{array}\right\} \left\{ \left\{ \end{array}\right\} \left\{$ $= - 2 u S \left\{ - \frac{S^{2} + r}{(S^{2} + 1)^{4}} \right\} = 0$ $= 245 \int \frac{5^2 - 1}{(s^2 + 1)^4} \int \frac{5}{2}$ They O become 8 $\begin{bmatrix} \omega - st + 3 \\ 0 \end{bmatrix} sint dt = 2HS \left\{ \frac{s^2 - 1}{(s^2 + 1)^4} \right\}$ put &=1 { [28] b } b } $\int_{0}^{\infty} e^{-t} t^{3} sint dt = 24 \int_{0}^{1-1} \frac{1-1}{(2)^{4}} \int_{0}^{\infty}$ $\int_{e}^{\infty} e^{t} t^{3} sint dt = 0$

@ strift a cinut dt = 1/25 minu ady bo Soine W.K.T (Est fit) dt and [fit)] sonigos $\int_{0}^{\infty} e^{st} t \sin ut \, dt = d[t \sin ut] = 0$ 2[tsin4t] =>{pappents @} $f(t) = \text{Sinut}, \ d[f(t)] = d[\text{Sinut}] = \frac{4}{s^2 + 16}$ $\mathcal{L}[tsinut] = -\frac{d}{ds} \left[\frac{H}{s^2 + 16} \right]$ $= - \left[\frac{(3^2 + 16)(0) - 4(23)}{(3^2 + 16)^2} \right]$ $d\left[tsinut\right] = \frac{.85}{(S^2 + 16)^2}$ $() = \int_{a}^{b} e^{st} t sinut = \frac{8S}{(S^2 + 16)^2}$ They, put S=2 $\int_{a}^{\infty} e^{-2t} t \sin ut = \frac{8 \times 2}{(2^2 + 16)^2}$ pest sinut = 16 = [00 +] bood soo $\int_{e}^{\infty} e^{2t} t sinut = \frac{1}{25}$ 1095 - 209(5+9)

Doyougself Find the value of [test cost dt wing daplace transform. D (1) 323 TAN Qu: [e3t. t co.82t dt = 5 Find the Laplace transform of the following Functions $O_{\frac{1-e^{-at}}{t}}$ 4[+Sinut]=0 - 25 - 35 Soino Use property 3 2 [+ H) = [F(S) dS det flt)=1-e-at (dit $\mathcal{A}[f(t)] = \mathcal{A}[1 - e^{-\alpha t}]$ = 2[i] - 2[eat] 28. = [tuni28] 4 = 1/2 - 10 - 2 + 12 - 7 (0) $\therefore d[F(t)] = \frac{1}{5} = \frac{1}{5+a} = tunizate$ Vield $\mathcal{A}[f(t)] = \tilde{f}(S)^{(t)}$ coe have $\mathcal{L}\left[\frac{f(t)}{t}\right] = \int f(s) dS_{unicyte}$ $= \int \left(\frac{1}{5} - \frac{1}{5ta} \right) dS$ $= \left[log s - log(s+a) \right]^{\infty}$ 4> [logm - logn = log (m) form }

= [109 (S+0) ((++'e) par = 2 par] } $= \begin{bmatrix} \dim & \log\left(\frac{\sqrt{2}}{5+a}\right) - \log\left(\frac{2}{5+8}\right) \\ S > 0 \end{bmatrix}$ = $\dim \log\left(\frac{B}{s(1+\frac{9}{5})}\right) \log\left(\frac{S}{s+\alpha}\right)$ $= uog(\frac{1}{1+0}) + uog(\frac{s}{6+a}) + uo$ $= uog(1) - uog(\frac{s}{s+a})$ = $0 - uog(\frac{s}{s+a})$ (u+a)) gau, $f(-log(\frac{s}{s+a})$ = $0 - uog(\frac{s}{s+a})$ Log(S+a) = 209 (Sta) (++ 2) 802 = = log (S+q) $\frac{con^{\circ}}{con^{\circ}} \det f(t) = \sin^{2} t \qquad gold min$ 2. Sin2t $\mathcal{L}(f(t)) = \mathcal{L}\left[\frac{1-\cos 2t}{2}\right]_{1}$ = Y2 [2 [1] - 2 [00,82t]] Par X - $= \frac{1}{2} \left\{ \frac{1}{S} - \frac{S}{S^2 + H} \right\}$ $= \frac{1}{2} \left\{ \frac{1}{S} - \frac{S}{S^2 + H} \right\}$ hence d[ft]= 1 [F(S) dS = 1/2 5 2 5 - 5 - 5 - 2 ds

$$\begin{aligned} & \left(\begin{array}{c} \underline{s_{1}} \\ \underline{s_{1}}$$

3 asint Sinst 31+8) Bo1 - (1 Soin: let flt) = 2sint sinst WKT SINASING = - 1/2 [GOS(A+B)+COS(A-B)] $SintSin5t = -\frac{1}{2} \left[cos6t - cos(-ut) \right]$ $= -\frac{1}{2} \left[\frac{\cos 6t}{\cos 6t} - \frac{\cos 4t}{\cos 4t} \right]$ $sintsinst = \frac{1}{2} \left[cosut - cosot \right]$ Now, $f(t) = \beta \cdot \frac{1}{2} \left[\cos \mu t - \cos \theta t \right] \left[\frac{\partial \theta + \frac{1}{2}}{\partial 1 + \frac{1}{2}} \right] \beta \theta 1 =$ $f(t) = \cos(4t - \cos(86t)) = d[\cos(86t)] = d[\cos($ $= \frac{8}{c^2 + 16} - \frac{8}{s^2 + 36}$ Sinat d[#(t)] = #(S)d[felt]=d[smat] $d\left[\frac{f(t)}{t}\right] = \int_{0}^{\infty} \bar{f}(s) ds$ f [f(H)] = a $= \int_{0}^{\infty} \left\{ \frac{S}{S^{2} + 16} - \frac{S}{S^{2} + 36} \right\} dS \quad (2)_{1} = [(1)_{1}]_{1}$ 5) + 100: 10 $= \left[\frac{1}{2} \log \left(s^2 + 16 \right) - \frac{1}{2} \log \left(s^2 + 36 \right) \right]$ $= \frac{1}{2} \left[\frac{10}{9} \left(s^{2} + 16 \right) - \frac{109}{9} \left(s^{2} + 36 \right) \right]^{10}$ $= \frac{1}{2} \left[\frac{109}{3^2 + 36} \right]^{10}$ $= \lim_{S \to \infty} \frac{1}{2} \log \left[\frac{3^2 (1 + \frac{16}{5^2})}{\frac{3^4 (1 + \frac{36}{5^2})}{\frac{3^4 (1 + \frac{36}{5^2})}{\frac{3$

= $\frac{1}{2} \left\{ u g \left(1 \right) - 10 g \left(\frac{s^2 + 16}{s^2 + 36} \right) \right\}$ gsint sinst $= \frac{1}{2} \left\{ -\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \left\{ \frac{s^2 + 16}{s^2 + 36} \right\} \right\}$ $= \frac{1}{2} \log \left(\frac{s^2 + 36}{s^2 + 16} \right)$ =>mlogn=lognm => $m \log n = \log n$ = $\log \left(\frac{s^2 + 36}{s^2 + 16} \right) \frac{1}{10800} = 10800 \frac{1}{10800} \frac{1}{10$ = (+) + ; cum $l\left[\frac{2sintsins}{t}\right] = log \sqrt{\frac{s^2 + 36}{s^2 + 16}}$ -[+4800] = [(+1+]P A Sinat 14 16 St 36 Soino der flt)= Sinat (2) = = [(+) +] 4 d[f(t)] = d[Sinat]2b(2) = $\begin{bmatrix} 1\\ +1\\ +\end{bmatrix}$ = $\begin{bmatrix} +1\\ +\end{bmatrix}$ $f\left[f(t)\right] = \frac{\alpha}{c^2 + \alpha^2}$ $= \int_{a}^{b} \frac{a}{s^{2}+a^{2}} ds$ $= \int_{a}^{b} \frac{a}{s^{2}+a^{2}} ds$

= % [tam'(%)] $\frac{1}{10} = \frac{1}{10} = \frac{1}{10} = \frac{1}{10} = \frac{1}{10}$ = tam'(00) - tam'(3/a) = T1/2 - tam (S/a) $d\left[\frac{sinat}{t}\right] = \cot\left(\frac{4}{a}\right)$ (colar all red 1 2, + a, Cosat - cosbt sono ket flt) = cosat - cosbt $\mathcal{L}[f(t)] = \mathcal{L}[cosat - cosbt]$ = + [cosat] - + [cosbt] [] $\mathcal{L}[f(t)] = \frac{g}{g^2 + a^2} - \frac{g}{g^2 + b^2}$ $\mathcal{L}\left[\neq (t) \right] = \bar{\varphi}(S)$ $d\left[\frac{f(t)}{t}\right] = \int_{t}^{t} f(s) ds$ $= \int_{C}^{\infty} \left(\frac{S}{S^2 + a^2} - \frac{S}{S^2 + b^2} \right) dS$ $= \frac{1}{2} \left[\log (s^{2} + a^{2}) - \log (s^{2} + b^{2}) \right]_{s}^{\infty}$ $= \frac{1}{2} \int \log \left\{ \frac{s^2 + a^2}{s^2 + b^2} \right\} \int_{c}^{\infty}$ $= \frac{1}{2} \begin{cases} \lim_{s \to \infty} \log\left(\frac{s^{f}\left(1+a_{1/s^{2}}^{2}\right)}{s^{2}\left(1+b_{1/s^{2}}^{2}\right)}\right) - \log\left(\frac{s^{2}+a^{2}}{s^{2}+b^{2}}\right) \end{cases}$ = $\frac{1}{2} \int \log(1) - \log(\frac{s^2 + a^2}{s^2 + b^2})$ $= \frac{1}{2} \left\{ -\frac{\log\left(\frac{s^2+a^2}{s^2+b^2}\right)}{2} \right\}$ a:2 + = (+ | H

$$= \frac{1}{3} deg \left(\frac{s^{2} + b^{2}}{s^{2} + a^{2}}\right)$$

$$= deg \left(\frac{s^{2} + b^{2}}{s^{2} + a^{2}}\right)^{L}$$

$$d \left[\frac{(m)}{t} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}\right]^{L}$$

$$d \left[\frac{(m)}{t} + \frac{1}{2} + \frac{1}{2}\right]^{L}$$

$$d \left[\frac{(m)}{t} + \frac{1}{2} + \frac{1}{2}\right]^{L}$$

$$d \left[\frac{(m)}{t} + \frac{1}{2} + \frac{1}{2}\right]^{L}$$

$$d \left[\frac{(m)}{s^{2} + a^{2}}\right]^{L}$$

$$\begin{aligned} & \lim_{s \to \infty} \log \left\{ \frac{s^{s} + u}{s^{s} + \eta} - \log \left\{ \frac{s^{s} + u}{s^{s} + \eta} \right\} \\ &= \lim_{s \to \infty} \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} - \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\} \\ &= \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\} \\ &= \log \left\{ (1) - \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\} \\ &= \log \left\{ (1) - \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\} \right\} \\ &= \log \left\{ (1) - \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\} \right\} \\ &= \log \left\{ (1) - \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\} \right\} \\ &= \log \left\{ (1) - \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\} \right\} \\ &= \log \left\{ (1) - \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\} \right\} \\ &= \log \left\{ (1) - \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\} \right\} \\ &= \log \left\{ (1) - \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\} \right\} \\ &= \log \left\{ (1) - \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\} \right\} \\ &= \log \left\{ (1) - \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\} \right\} \\ &= \log \left\{ (1) - \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\} \\ &= \log \left\{ (1) - \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\} \right\} \\ &= \log \left\{ (1) - \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\} \right\} \\ &= \log \left\{ (1) - \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\} \right\} \\ &= \log \left\{ (1) - \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\} \\ &= \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\} \\ &= \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\} \\ &= \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\} \\ &= \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\} \\ &= \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\} \\ &= \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\} \\ &= \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\} \\ &= \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\} \\ &= \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\} \\ &= \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\} \\ &= \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\} \\ &= \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\} \\ &= \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\} \\ &= \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\}$$
 \\ &= \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\} \\ &= \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\} \\ &= \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\} \\ &= \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\} \\ &= \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\} \\ &= \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\} \\ &= \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\} \\ &= \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\} \\ &= \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\} \\ &= \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\} \\ &= \log \left\{ \sqrt{\frac{s^{s} + u}{s^{s} + \eta}} \right\} \\ &= \log \left\{ \sqrt{\frac{s^{s} + u}{s

and becomes $4[f(t)] = \frac{1}{S - 1092} + dog \sqrt{s^2 + 9}/s^2 + 4 + \frac{2S}{(S^2 + 1)^2}$ * Find the Laplace transform of test Sinzt Soine we Shall find First & (t'sinzt) $J[t^{2}sin_{2}t] = (-1)^{\frac{2}{d^{2}}} J(sin_{2}t)$ $= \frac{d}{ds} \left[\frac{d}{ds} \left[\frac{2}{s^2 + 4} \right] \right]$ $= \frac{d}{ds} \left[\frac{(s^2 + 4)(0) - 2(2s)}{(s^2 + 4)^2} \right]$ $= \frac{d}{ds} \left[\frac{-us}{(s^2+4)^2} \right]^{\frac{1}{2}}$ $= \left[\frac{(g^{2}+u)^{2}(-u)-(-us)(2)(s^{2}+u)(2s)}{(g^{2}+u)^{2}} \right]^{2}$ $= (S^{2} + u) \int -\frac{H^{(s^{2}+u)}}{(S^{2}+u)} \int \frac{16S^{2}}{(S^{2}+u)}$ $\frac{16s^2 - 4s^2 - 16}{(s^2 + 4)^3}$ $d[t^{2}sin^{2}t] = \frac{12s^{2}-16}{(s^{2}+u)^{3}}$ $d\left[t^{2}S^{(1)}\right] = \left[\frac{12S^{2} - 16}{(S^{2} + 4)^{3}}\right] = 5 + 3$ $J\left[e^{-3t}t^{2}sin2t\right] = \frac{12(s+3)^{2} - 16}{((s+3)^{2} + 4)^{3}}$ pppplq

Laplace transform of periodic 21 functions Bitatementity Definition: A function flt) y said to be 2[f] a periodic function of period T>O if $f(t+n\tau) = f(t)$ where n = 1, 2, 3cz: Sint, cost are periodic functions of period 211 because $Sin(t+2n\pi) = Sint, Cos(t+2n\pi) = cost$ Theorem: If flt) is a periodic function of period T, then $\lambda [f(t)] = \frac{1}{1-e^{ST}} \left[\bar{e}^{St} f(t) dt \right]$ [without proof] $\bigcirc If f(t) = t^2, o < t < 2 and f(t + 2) = f(t)$ for t>2, find d[f(t)]. Soine flt) is a periodic function of period 2. we have $\mathcal{L}[f(t)] = \frac{1}{1 - e^{ST}} \int e^{St} f(t) dt$ $d\left[f(t)\right] = \frac{1}{1 - e^{s_2}} \int_{0}^{2} e^{-st} t^2 dt$ $d\left[f(t)\right] = \frac{1}{1-\tilde{e}^{2S}} \int_{-\infty}^{2} t^{2} \cdot \tilde{e}^{St} dt$ So Apply Bernoulli's rule of integration by posts

$$\begin{split} \lambda \left[f(t) \right] &= \frac{1}{1 - e^{2S}} \left[\left[t^2 \frac{e^{St}}{-S} - \partial t \times \frac{1}{-S} \times \frac{e^{-St}}{-S} + \partial t \right] \times \frac{1}{e^{2S}} \right] \\ + \left[f(t) \right] &= \frac{1}{1 - e^{2S}} \left[t^2 \frac{e^{-St}}{-S} - \partial t \frac{1}{-S} \times \frac{e^{-St}}{-S} + \partial t \frac{1}{-S} \times \frac{e^{-St}}{-S} \right] \\ &= \frac{1}{1 - e^{2S}} \left[t^2 \frac{e^{-St}}{-S} - \partial t \frac{e^{-St}}{-S} + \partial t \frac{e^{-St}}{-S} + \partial t \frac{e^{-St}}{-S} \right] \\ &= \frac{1}{1 - e^{2S}} \left[t^2 \frac{e^{-St}}{-S} + \partial t \frac{e^{-St}}{-S} + \partial t \frac{e^{-St}}{-S} + \partial t \frac{e^{-St}}{-S} + \partial t \frac{e^{-St}}{-S} \right] \\ &= \frac{1}{1 - e^{2S}} \left[t^2 \frac{e^{-St}}{-S} + \partial t \frac{e^{-St}}{-S} + \partial t \frac{e^{-St}}{-S} + \partial t \frac{e^{-St}}{-S} + \partial t \frac{e^{-St}}{-S} \right] \\ &= \frac{1}{1 - e^{2S}} \left[t^2 \frac{e^{-St}}{-S} + \partial t \frac{e^{-St}}{-S} + \partial t \frac{e^{-St}}{-S} + \partial t \frac{e^{-St}}{-S} \right] \\ &= \frac{1}{1 - e^{2S}} \left[t^2 \frac{e^{-St}}{-S} + \partial t \frac{e^{-St}}{-S} + \partial t \frac{e^{-St}}{-S} + \partial t \frac{e^{-St}}{-S} \right] \\ &= \frac{1}{1 - e^{2S}} \left[t^2 \frac{e^{-St}}{-S} + \partial t \frac{e^{-St}}{-S} + \partial t \frac{e^{-St}}{-S} + \partial t \frac{e^{-St}}{-S} \right] \\ &= \frac{1}{1 - e^{2S}} \left[t^2 \frac{e^{-St}}{-S} + \partial t \frac{e^{-St}}{-S} + \partial t \frac{e^{-St}}{-S} + \partial t \frac{e^{-St}}{-S} \right] \\ &= \frac{1}{1 - e^{2S}} \left[t^2 \frac{e^{-St}}{-S} + \partial t \frac{e^{-St}}{-S} + \partial t \frac{e^{-St}}{-S} + \partial t \frac{e^{-St}}{-S} \right] \\ &= \frac{2}{S^3} (1 - e^{2S}) \left[t^{-St} \frac{e^{-St}}{-S} + \partial t \frac{e^{-St}}{-S} + \partial t \frac{e^{-St}}{-S} + \partial t \frac{e^{-St}}{-S} \right] \\ &= \frac{2}{S^3} (1 - e^{2S}) \left[t^{-St} \frac{e^{-St}}{-S} + \partial t \frac{e^{-St}}{-S} + \partial t \frac{e^{-St}}{-S} \right] \\ &= \frac{2}{S^3} (1 - e^{2S}) \left[t^{-St} \frac{e^{-St}}{-S} + \partial t \frac{e^{-St}}{-S} \right] \\ &= \frac{2}{S^3} (1 - e^{-S}) \left[t^{-St} \frac{e^{-St}}{-S} + \partial t \frac{e^{-S}}{-S} \right] \\ &= \frac{2}{S^3} (1 - e^{-S}) \left[t^{-St} \frac{e^{-S}}{-S} + \partial t \frac{e^{-S}}{-S} + \partial t \frac{e^{-S}}{-S} \right] \\ &= \frac{2}{S^3} (1 - e^{-S}) \left[t^{-St} \frac{e^{-S}}{-S} + \partial t \frac{e^{-S}}{-S} \right] \\ &= \frac{2}{S^3} \left[t^{-S} \frac{e^{-S}}{-S} \right] \\ &= \frac{2}{S^3} \left[t^{-S} \frac{e^{-S}}{-S} + \partial t \frac{e^{-S}}{-S} \right] \\ &= \frac{2}{S^3} \left[t^{-S} \frac{e^{-S}}{-S} \right] \\ &= \frac{2}{S^3} \left[$$

Contraction of the local division of the loc

fit) is a periodic function of period The $d[f(t)] = \frac{1}{1 - e^{S(T_{0})}} \int_{e^{-St}}^{e^{-St}} E \sin(\omega t) dt.$ $\mathcal{E}[F(t)] = \frac{E}{k - e^{\pi S/\omega}} \left[\frac{e^{-St}}{s^2 + \omega^2} \left(-SSin\omega t - \omega cos\omega t \right) \right]^{\pi/\omega}$ $\frac{1}{2} \cos k \cdot \tau \int_{e}^{a^{2c}} \sin bx \, dx = \frac{a^{2c}}{a^{2} + b^{2}} \left(a \sin bx - b \cos bx \right)$ $\begin{aligned} & \left[f(t) \right] = \underbrace{E}_{\left(t - e^{-\pi g_{\omega}} \right) \left(s^{2} + w^{2} \right)} \begin{bmatrix} -s_{\omega} \left(-ssin \omega T_{\omega} - w \cos w T_{\omega} \right) \\ & e^{2} \left(0 - w \left(1 \right) \right) \end{bmatrix} \end{aligned}$ 0 $= \underline{E} \left[\left\{ e^{-ST} \left\{ e^{-SS} \left[-SS \right] - (0) \left(-\infty \right) \right\} \right] \right]$ $(1 - e^{TS} \left[\left\{ e^{-ST} \left[-(0) \left(-\infty \right) \right\} \right] \right]$ $= \frac{E}{(1-e^{\pi S(\omega)})(S^{2}+\omega^{2})} \left[e^{ST_{\omega}} \left(0 - \omega(-1) \right) + \omega \right]$ $= \underline{E} \left[e^{ST} (\omega) + \omega \right]$ $(1 - e^{TS} (\omega) (S^{2} + \omega^{2}) \left[e^{ST} (\omega) + \omega \right]$ NA AN $1 + e^{-ST_0}$ = Ew $(1-e^{-\pi S_{1}}\omega)(s^{2}+\omega^{2})$ X'Y both Nor & Dr by ets in RHS $= E \omega \left(1 + e^{-S \pi} \right) \left(e^{\pi S / s \omega} \right)$ $(1 - e^{-\pi s} \omega) (s^2 + \omega^2) e^{\pi s} \omega$ (+) \$ 1

Scanned with CamScanne

 $\frac{E\omega}{s^{2} + \omega^{2}} \frac{e^{\frac{\pi}{2}\omega} + e^{-\frac{s\pi}{2}\omega}}{e^{\frac{\pi}{2}\omega}} \frac{e^{\frac{\pi}{2}\omega}}{e^{\frac{\pi}{2}\omega}} = \frac{e^{\frac{\pi}{2}\omega}}{e^{\frac{\pi}{2}\omega}}$ = ST/W + TS $S^{2} + \omega^{2} = e^{\frac{\pi}{2}} \frac{S}{\omega} - e^{-\frac{\pi}{2}} \frac{S}{\omega} = -\frac{35\pi}{2\omega} + \frac{\pi}{3} \frac{S}{\omega}$ $= -\frac{35\pi}{2\omega} + \frac{\pi}{3} \frac{S}{\omega} + e^{-\frac{S\pi}{2}} \frac{S}{\omega} = -\frac{3\pi}{2\omega} = -\frac{5\pi}{2\omega}$ $= -\frac{5\pi}{2\omega} = -\frac{5\pi}{2\omega}$ $= -\frac{5\pi}{2\omega}$ $\begin{bmatrix} z \partial \cdot K \cdot T & O \partial g h x = e^{\chi} + e^{\chi} \\ & S in h \chi = e^{\chi} + e^{\chi} \end{bmatrix} \begin{bmatrix} z \\ & z \end{bmatrix}$ So x" and - both Nor & Dr by 2 $\partial \left[f(t) \right] = \frac{E\omega}{s^2 + \omega^2} \times \left[2 \left(\frac{\pi s}{s} - \frac{s\pi s}{s} \right) \right]$ $\frac{1}{2}\left(\frac{e^{\pi}}{2}\right)$ $= \frac{E\omega}{s^2 + \omega^2} \times \frac{\mathscr{COSh}(\pi_{s})}{\mathscr{S}sinh(\pi_{s})}$ $d\left[f(t)\right] = \frac{E\omega}{S^2 + \omega^2} \operatorname{Coth}(\frac{\pi S}{\omega})$ B Given $f(t) = \int E$, $0 \times t \wedge a/2$, where f(t+a) = f(t). $-E = a/2 \times t \wedge a$ S.T d[f(t)] = E/s tamh(aS/4). Solo The Given function is periodic with period $T = \alpha \qquad 1 \qquad T = \alpha \qquad$ $= \frac{1}{1-e^{s_0}} \int_0^q e^{-St} f(t) dt$

 $\mathcal{E}[\mathcal{F}(\mathcal{H})] = \frac{1}{1 - e^{\alpha S}} \left\{ \int e^{-St} \mathcal{E} dt + \int e^{-St} (-\mathcal{E}) dt \right\}$ $= \frac{E}{1-e^{\alpha S}} \left\{ \int_{0}^{\infty} e^{-St} dt - \int_{0}^{\infty} e^{-St} dt \right\}$ $= \frac{E}{1-e^{\alpha s}} \left[\begin{bmatrix} e^{-st} \\ -s \end{bmatrix}_{0}^{q/2} - \begin{bmatrix} e^{-st} \\ -s \end{bmatrix}_{q}^{a} \right]$ $= \frac{E}{1-e^{\alpha S}} \left\{ \begin{bmatrix} e^{-St} \\ -S \end{bmatrix}_{0}^{a/2} + \begin{bmatrix} e^{-St} \\ S \end{bmatrix}_{a/2}^{a} \right\}$ $= \frac{E}{1-e^{\alpha S}} \left\{ \begin{bmatrix} e^{-St} \\ -S \end{bmatrix}_{0}^{a/2} + \begin{bmatrix} e^{-St} \\ S \end{bmatrix}_{a/2}^{a} \right\}$ $= \frac{E}{1-e^{\alpha S}} \left\{ \begin{bmatrix} e^{-St} \\ -S \end{bmatrix}_{0}^{a/2} + \begin{bmatrix} e^{-St} \\ S \end{bmatrix}_{a/2}^{a} \right\}$ $= \frac{E}{1 - e^{\alpha s}} \int \frac{e^{-s \cdot q/2}}{1 - s} = \frac{e^{\alpha}}{1 - s} + \int \frac{e^{-s \cdot q}}{1 - s} = \frac{e^{\alpha}}{1 - s} + \int \frac{e^{-s \cdot q}}{1 - s} = \frac{e^{\alpha}}{1 - s} + \int \frac{e^{-s \cdot q}}{1 - s} = \frac{e^{\alpha}}{1 - s} + \int \frac{e^{-s \cdot q}}{1 - s} = \frac{e^{\alpha}}{1 - s} + \int \frac{e^{-s \cdot q}}{1 - s} = \frac{e^{\alpha}}{1 - s} + \int \frac{e^{-s \cdot q}}{1 - s} = \frac{e^{\alpha}}{1 - s} + \int \frac{e^{-s \cdot q}}{1 - s} = \frac{e^{\alpha}}{1 - s} + \int \frac{e^{-s \cdot q}}{1 - s} = \frac{e^{\alpha}}{1 - s} + \int \frac{e^{-s \cdot q}}{1 - s} = \frac{e^{\alpha}}{1 - s} + \int \frac{e^{-s \cdot q}}{1 - s} = \frac{e^{\alpha}}{1 - s} + \int \frac{e^{-s \cdot q}}{1 - s} = \frac{e^{\alpha}}{1 - s} + \int \frac{e^{-s \cdot q}}{1 - s} = \frac{e^{\alpha}}{1 - s} + \int \frac{e^{-s \cdot q}}{1 - s} = \frac{e^{\alpha}}{1 - s} + \int \frac{e^{-s \cdot q}}{1 - s} = \frac{e^{\alpha}}{1 - s} + \int \frac{e^{-s \cdot q}}{1 - s} = \frac{e^{\alpha}}{1 - s} + \int \frac{e^{-s \cdot q}}{1 - s} = \frac{e^{\alpha}}{1 - s} + \int \frac{e^{-s \cdot q}}{1 - s} = \frac{e^{\alpha}}{1 - s} + \int \frac{e^{-s \cdot q}}{1 - s} = \frac{e^{\alpha}}{1 - s} + \int \frac{e^{-s \cdot q}}{1 - s} = \frac{e^{\alpha}}{1 - s} + \int \frac{e^{\alpha}}{1 - s} + \int \frac{e^{\alpha}}{1 - s} = \frac{e^{\alpha}}{1 - s} + \int \frac{$ $= \frac{E}{1-e^{-s}} \left\{ \frac{e^{-s} \frac{9}{2}}{-s} + \frac{1}{s} + \frac{e^{-sa}}{s} - \frac{e^{-s} \frac{9}{2}}{s} \right\}$ $= \frac{E}{S(1-e^{\alpha_{5}})} \left\{ \begin{array}{c} -e^{-\delta_{1}^{\alpha}/2} + 1 + e^{-S\alpha} - e^{-S_{1}^{\alpha}/2} \right\}$ $= \frac{E}{S(1-e^{-S^{a}})} \left\{ -\frac{2e^{-S^{a}}}{2e^{-S^{a}}} + 1+e^{-S^{a}} \right\}$ $S(1-e^{-S}) \left\{ 1+e^{-Sa} - 2e^{-Sa/2} \right\}$ $= \frac{E}{S(1-e^{-Sa})} \left\{ 1+e^{-Sa} - 2e^{-Sa/2} \right\}$ $= \frac{E}{S(1-e^{-Sa})} \left\{ (1-e^{-aS/2})^2 \right\}$ $= \frac{E}{S(1-e^{-Sa})} \left\{ (1-e^{-aS/2})^2 \right\}$

d[fit)] = E(T-e)2)2 S(T-eas/2)(1+eas/2) $\mathcal{F}[Flt] = \frac{\mathcal{E}(1 - e^{-\alpha S/2})}{S(1 + e^{-\alpha S/2})}$ XI' both Nor & Dr by eas/4 we get $\mathcal{F}[F[H]] = E\left(1 - e^{-aS/2}\right) e^{aS/4} + e^{aS/4}$ $S(1+e^{-\alpha S/2})e^{\alpha S/4}$ $= E \left(e^{aS/4} - e^{aS/2} e^{aS/4} \right)$ $= \frac{E(e^{\alpha s/4} - e^{\alpha s/4})}{S(e^{\alpha s/4} + e^{\alpha s/2})} = \frac{e^{\alpha s/4}}{S(e^{\alpha s/4} - e^{\alpha s/2} + e^{\alpha s/4})} = \frac{e^{\alpha s/4} + e^{\alpha s/4}}{e^{\alpha s/4}} = \frac{e^{\alpha s/4} + e^{\alpha s/4}}{e^{\alpha s/4}} = \frac{e^{\alpha s/4} + e^{\alpha s/4}}{e^{\alpha s/4}} = \frac{e^{\alpha s/4}}{e^{\alpha s/4}} = \frac{e^{\alpha s/4}}{e^{\alpha s/4}}$ $= E(e^{as/4} - e^{-as/4})$ S (eas/4+ eas/4) x14 & + by 2 both Nor & Dr $= E 2 (e^{a}/4 - e^{-a}/4)$ 2 Sinhx = e $S \cdot 2 (e^{aS/4} + e^{-aS/4})$ $2 \cos \theta = \frac{\cos \theta}{\cos \theta} = \frac{e^{2} + e^{2}}{e^{2} + e^{2}}$ $= \frac{E}{s} \times \frac{\sinh(as/4)}{\cosh(as/4)}$ d[f(H)]= E tamh (as/4)

 $f(t) = \int_{-E}^{E} o \times t \times a \quad s \cdot \tau \quad d[f(t)] = \frac{E}{S} \ tomps$ H-W Jame 7 $If f(t) = \begin{cases} t & 0 \le t \le a \\ a = t, & 0 \le t \le aa, & f(t+2a) = f(t) \end{cases}$ () Sketh the graph of fit) of a periodic fure - tron Jame Ep (1) S.T d[f(t)]= 1/2 tamh(25/2) Soind that f(t) = y and y = t is a straight diffee passing through the origin making diffee passing through the origin making an angle 45° with the t-apuig y = 2a - tan angle 45° with the t-apuig y = 2a - tor y + t = 2a or t/2a + 1/2a = 1 is a straight dine passing through the points (20,0) and dine passing through the points (20,0) and d. The graph of y=f(t) is as follows (0,20) The periodic function fit) y called triangulag coave function. ēstflt) dt 1-557 (i) we have 7= 20 and d[flt)]= 1 $\mathcal{J}\left[f(t)\right] = \frac{1}{1 - e^{-2\alpha S}} \int_{0}^{-St} f(t) dt$ $= \frac{1}{1 - e^{2\alpha S}} \int \left[\frac{1}{2} e^{St} dt + \right]$ (Da-t) estat

Bernoully rule $F[f(t)] = \frac{1}{1 e^{-2\alpha S}} \left[\frac{1}{2} \frac{e^{-St}}{-S} - \frac{(1)e^{-St}}{S^{2}} \right] + \left[(3a-t)e^{-St} - \frac{(1)e^{-St}}{-S} - \frac{(1)e^{-St}}{S^{2}} \right]$ $\lambda [f(t)] = \frac{1}{1 - e^{2\alpha S}} \left[\frac{-\alpha e^{Sq}}{s} - \frac{e^{Sq}}{s^2} \right] - \left(0 - \frac{e^{\circ}}{s^2} \right] + \left[e^{2\alpha - 2\alpha S} \frac{e^{-2\alpha S}}{s^2} \right]$ $= (-1)\frac{e^{-2\sigma S}}{S^2} = \left(\frac{(2\alpha - \alpha)e^{-2\sigma S}}{-S} + \frac{e^{-2\sigma S}}{S^2} \right) = \left(\frac{(2\alpha - \alpha)e^{-2\sigma S}}{-S} + \frac{e^{-2\sigma S}}{S^2} \right)$ $= \frac{1}{1 - e^{2\alpha S}} \left\{ \begin{array}{c} 1 - \frac{1}{ae} - \frac{1}{ae} - \frac{1}{ae} - \frac{1}{ae} - \frac{1}{ae} + \frac{1}{ae} + 0 + \frac{1}{ae} + \frac{1}{ae} + 0 + \frac{1}{ae} + \frac$ $= \frac{1}{1-e^{2\alpha S}} \left\{ \begin{array}{c} -\frac{1}{2e^{S}} \frac{e^{-S}}{e^{-S}} + \frac{1}{3^{2}} + \frac{e^{-2\alpha S}}{s^{2}} + \frac{1}{3e^{-S}} + \frac{1}{3e^{-S$ $= \frac{1}{(1-e^{-9aS})^{2}} \left\{ \frac{-e^{-Sa}+1}{-e^{-Sa}+1} + \frac{e^{-2aS}-e^{-Sa}}{-e^{-Sa}} \right\}$ $= \frac{1}{S^{2}(1-e^{2\alpha S})} \left\{ 1 - 2e^{S^{\alpha}} + e^{2\alpha S} \right\}^{1}$ the form of (arb) conite $=\frac{1}{s^{2}(1-e^{2S})}\left\{(1-e^{aS})^{2}\right\}$

 $\left| \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)^{2} \right| = \left(\frac{1}{2} \left(\frac{1}{2} \right)^{2} \right)^{2}$ s'(t-e^{os})(1+e^{os}) $X^{M} \xi \div both Nr \xi Dr by e^{3/2}$ $= \frac{e^{05/2} - e^{05} e^{05/2}}{5^{2} (e^{0/2} + e^{0.05} e^{0.05/2})}$ $(a) = \frac{e^{3/2} - e^{3/2}}{e^{3/2} + e^{-3/2}}$ x14 & - both Nor & Dr by 2 $\frac{\left|\left|\frac{e^{\alpha s/2}-e^{\alpha s/2}\right|}{2}\right|$ $= \frac{1}{5^2} P(e^{\alpha y_2} + e^{\alpha y_2})$ $= \frac{1.5inh(^{0}\frac{8}{2})}{s^{*} Co_{8}h(^{0}\frac{8}{2})}$ $= \frac{1}{3^{3}} \tanh \left(\frac{\alpha s}{2} \right)$ $= \frac{1}{3^{3}} \tanh \left(\frac{\alpha s}{2} \right)$ $= \frac{1}{3^{3}} \tanh \left(\frac{\alpha s}{2} \right)$ (retestinbace on (and - bed ba).

\$1m] = E (-ssin wt - cocofwt)] 1/2 $\frac{E}{(s^{2})^{2}} \left[\left[e^{-sT_{0}} \left(-ssinwT_{0} - \omega \cos w T_{0} \right) \right] \right]$ $= \frac{E}{(s^{2}+\omega^{2})(1-e^{2\pi m}\omega)} \begin{bmatrix} e^{s\pi}/\omega (s sih \pi + \omega \omega 8\pi) \\ + \omega \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $= \frac{E}{(s^{2}+\omega^{2})(1-e^{2\pi m}\omega)} \begin{bmatrix} -e^{s\pi}/\omega (\omega(-1)) + \omega \end{bmatrix}$ $(s^{1}+\omega^{2})(1-e^{-s}\pi\omega) = \frac{F\omega}{(s^{2}+\omega^{2})(1-e^{-s}\pi\omega)} = \frac{F\omega}{(s^{2}+\omega}) = \frac{F\omega}{(s^{2}+\omega)} = \frac{F\omega}{(s^{2}+\omega)}$ $(s^2+\omega^2)(1+e^{st}/\omega)(1+e^{st}/\omega)$ $d[f(t)] = \frac{E\omega}{(s^{2}+\omega^{2})(1+e^{sT_{\omega}})}$ nit Step function (Heavigide function) Definition :- The unit step function ult-a) or Heaviside function #lt-a) is defined of formas $u(t-\alpha) = \begin{cases} 0, t \leq \alpha \\ 1, t > \alpha \end{cases}$ where $\alpha \neq constant$

Scanned with CamScanne

Properties associated with the unit stop $\bigcirc \mathcal{L}[u(t-\alpha)] = \underline{e}^{-\alpha S}$ $\bigcirc \mathcal{L}[v(t-\alpha)] = \underline{e}^{-\alpha S}$ $\bigcirc \mathcal{L}[f(t-\alpha)u(t-\alpha)] = \underline{e}^{-\alpha S} \overline{f}(S) \quad where \mathcal{L}[f(t+1)] = \overline{f}(S)$ NOTE: The when $f(t,-\alpha) = 1$ as we have f(t) also equal to t and hence $d[f(t)] = \frac{1}{3}$. (a) $d[u(t-\alpha)] = \frac{e^{\alpha S}}{8}$. (b) $d[u(t-\alpha)] = \frac{e^{\alpha S}}{8}$. (3) $2f f(t) = \int f_1(t), t \leq a$ falt), t>a then $f(t) = f_1(t) + [f_2(t) - f_1(t)]u(t-a)$ $() \quad 2f \quad f(t) = \begin{cases} f_1(t), t \leq a \\ f_2(t), a < t \leq b \\ f_3(t), t > b \end{cases}$ Then $f(t) = f_1(t) + [f_2(t) - f_1(t)]u(t-a) +$ $[f_3(t) - f_2(t)]u(t-b)$ (d+b) (d+b) Problems:-TYPE O: TO find L[F(t) u(t-a)] where F(t) Gorking procedure is a polynomial in t. stup (): Let Flt) = flt-a) which implies that Flt+a)=flt). i.e Replace t by t+a to obtain f(t) and f ind $d[f(t)] = \bar{f}(S)$ in constant 2(1-1)=

 $S^{nep} \textcircled{O}: L[Fit) u [t-a)] = d[ft+a) u [t-a)] = e^{as} f(s)$ Deg: Given fit) of dycontineous function; to by property (11) find d[fl+)]by expressing fl+) in termy Stepo: we express fit) in termy of unit step function by directly making we of regult (iii) or (iv) of the care may be step ? : we find & [f(t)] ay in Type 1 (4+1) 418 = [+] + Problem 8 Rind the daplace transform of the following SELAD & (7459)] functions O [et-1 + sin (t-1)]alt-1) starles Sel'o Let FIt) = et -1 + sin(t-1) F(t)=F(t-1) $f(t-1) = [e^{t-1} + sin(t-1)]$ To get f(t), replace t by t+1 F(t+1) = f(t) $f(t) = e^{t} + sint$ $J[f(t)] = J[e^t + Sint]$ = d[et] + d[sint]= 1/5-1 -2+1 $= \bar{f}(S)$

 $\mathcal{L}[\vec{F}(t-1)u(t-1)] = \vec{e} \cdot \vec{F}(S) \quad \left(\cdot \cdot \cdot u^{\pm 1} \right)$ $2\left[\frac{e^{t-1}+sin(t-1)}{u(t-1)}\right]u(t-1)=e^{-s}\left[\frac{1}{3+1}+\frac{1}{s+1}\right]$ Barrow Ha Current Provent (Sint ult-m) monthly Soine F(t) = sint $F(t) = f(t - \pi)$ $p_{\text{output}} = f(t - \pi) = sint$ To get fit, reprace t by t +TT $f(t) = Sin(t+\pi)$ sin(180 to) = -Bino picon flt) = -Sint : Std oproduant. $\mathcal{L}[f(t)] = \mathcal{L}[-sint]$ $= -i \left[2 \left\{ Sint \right\} \right] + i \left[(1 + 1) \left(1 + 1 \right) \right]$ $d \left[f(t) \right] = -\frac{1}{S^2 + 1} + i \left[S^2 + 1 \right] + i \left[(1 + 1) \left(1 + 1 \right) \right]$ $\mathcal{F}[f(t)] = \overline{f}(s) \qquad [init + init + init$ $\therefore d\left[f(t-\pi)u(t-\pi)\right] = e^{\pi s} \bar{f}(s) \quad (:a=\pi)$ $= e^{\pi S} \times \frac{-1}{s^2 + r^2} = f(r^2 + r^2) u(r^2)$ $\mathcal{L}\left[f(t-\pi)u(t-\pi)\right] = -\overline{e}^{\pi S} \Rightarrow \mathcal{L}\left[sintu(t-\pi)\right] = -\overline{e}^{\pi S}$ 3 (1- 22t) u(t+1) = 1-e2t F(+) = 1-e2t $\frac{g_{oino}}{f(t+1)} = f(t+1)$

TO get fift) replace \$ by t-1 +2(t-1) $f(t) = 1 - e^{t 2(t-1)}$ = 1-e.2t-2 $f(t) = 1 - e^{2t} - 2 \Rightarrow f(t) = 1 - e^{2t} - 2 = 100$ 4[110] - Tas $\mathcal{L}[\mathcal{L}(t)] = \mathcal{L}[I - \mathcal{C}^{2t}, \mathcal{C}^{2}]$ $= \mathcal{L}[i] - \mathcal{L}[e^{2t} \cdot e^2]$ $= \frac{1}{2} - \frac{e^2}{2} d\left[\frac{e^{2t}}{2} \right]^{\frac{1}{2}} d\left[\frac{e^{2t}$ $= \frac{1}{12} - \frac{1}{6} = \frac{1}{5 - 2}$ 3 (+1) = (+1)= F $\mathcal{L}[\mathcal{F}(\mathcal{H})] = \tilde{\mathcal{F}}(S)$ $\mathcal{L}[\mathcal{F}(\mathcal{H})] = \tilde{\mathcal{F}}(S) \qquad (:: a = -1)$ $\mathcal{L}[\mathcal{F}(\mathcal{H})] = \tilde{\mathcal{F}}(S) \qquad (:: a = -1)$ $\mathcal{J}\left[(1-e^{2t})u(t+i)\right] = e^{2}\left(\frac{1}{s} - \frac{e^{2}}{s}\left(\frac{1}{s-2}\right)\right)$ $\underbrace{(3t^{2} + At + 5)u(t - 3)}_{F(t) = 3t^{2} + At + 5} \\ \underbrace{s_{01}}_{F(t)} \underbrace{F(t)}_{F(t) = F(t - 3)} \\ \underbrace{s_{01}}_{F(t)} \underbrace{F(t)}_{F(t) = F(t - 3)} \\ \underbrace{s_{01}}_{F(t) = F(t)} \underbrace{F(t)}_{F(t) = F(t - 3)} \\ \underbrace{s_{01}}_{F(t) = F(t)} \underbrace{F(t)}_{F(t) = F(t - 3)} \\ \underbrace{s_{01}}_{F(t) = F(t)} \underbrace{F(t)}_{F(t) = F(t - 3)} \\ \underbrace{s_{01}}_{F(t) = F(t)} \underbrace{F(t)}_{F(t) = F(t - 3)} \\ \underbrace{s_{01}}_{F(t) = F(t)} \underbrace{s_{01}}_{F(t) = F(t)} \\ \underbrace{s_{01}}_{F(t)$ $f(t-3) = 3t^2 + Ht + 5$ 354 replacetby t+3 $f(t) = 3(t+3)^2 + u(t+3) + 5$ $= 3[t^{2}+9+6t]+ut+12+5$ = 3t2 +27 +18t +4t +12+5 () (t + () + q) f(t)= 3t + 22t + 44 5010 $J[f(t)] = J[3t^2 + 22t + 44]$ = 3 2[t2]+ 221[t]+2[u4]

 $= 3 \cdot \frac{2!}{8^8} + 32 \cdot \frac{1!}{5!}$ $L[FR]] = \frac{6}{5^8} + \frac{32}{5^2} + \frac{44}{5}$ $L[f(t-3)] u(t-3)] = \bar{e}^{3S} \bar{f}(S) (-1; a=3)$ $J[(3t^2 + ut + 5)u(t-3)] = e^{3S}[\frac{6}{3} + \frac{22}{5} + \frac{uu}{5}]$ 5) (t3+t2+t+1) u(t+1) Solo $F(t) = f^3 + t^2 + t^+$ F(t) = F(t+1) $f(t+1) = t^3 + t^2 + t + 1$ (5) = [023] 7 Replace to by to-1 f (t) = (t+-1)3 + (t-1)2 + (t-1) + 10 (1+1) = = fot 3 aug (e+ = 3, t2 + 3t]+ [t2+1-2t] + t-1+1 $= t^{3} + 2t - 2t^{2} = t^{3} - 2t^{2} + 2t$ $\mathcal{L}[f(t)] = \mathcal{L}[t^3] - \mathcal{Q}\mathcal{L}[t^2] + \mathcal{Q}\mathcal{L}[t]$ $= \frac{3!}{5^{4}} - \frac{2}{5} \cdot \frac{2!}{5^{3}} + \frac{2}{5} \cdot \frac{1}{5^{2}}$ $\neq [f(t)] = \frac{6}{5^{u}} - \frac{4}{5^{3}} + \frac{2}{5^{2}} = \hat{f}(S)$ $= \frac{6}{5^{u}} - \frac{4}{5^{3}} + \frac{2}{5^{2}} = \hat{f}(S)$ $\int \left[(t^3 + t^2 + t + i) u(t + i) \right] = e^{S} \left[\int_{S^{u}}^{6} - \int_{S}^{3} \int_{S^{u}}^{7} \right]$ $(G(t^2-6t+q)e^{-(t-3)}u(t-3))$ Solo F(t) = f(t-3)-(t-3) $f(t-3) = (t^2 - 6t + 9)c$ = $(t-3)^2 = (t-3)$

 $\begin{aligned} \operatorname{suplace} & t \ by \ t \ t \ 3 \\ & f(t) = (t)^2 e^{t} \\ & f(t) = (t)^2 e^{t} \\ & f(t) \ J = d[t^2 e^{t}] \quad \left\{ p \operatorname{supenty} O \right\} \end{aligned}$ $= d \left[t^2 \right]_{S \to S+1} \qquad \text{co.k.t.} d \left[t^n \right]_{S \to S+1} \qquad \text{co.k.t.} d \left[t^n \right]_{S \to S+1}$ $= \frac{2!}{(s+1)^3} d[t^2] = 2!$ = 2 (S+1)³ (2) I F (1) = F (2) $\mathcal{L}[f(t)] = \bar{f}(S)$ J[f(t)] = f(S) $J[f(t-3)] = e^{-3s} f(S) = (-a = 3)$ $J[f(t-3)] = e^{-3s} f(S) = (-a = 3)$ $= e^{-3S} \left\{ \frac{2}{(S+1)^3} \right\} \left[(1-1) u(1-2) \right]$ $J\left[\left(t^{2}-6t+9\right)e^{-(t+3)}\right] = \frac{2e^{-3S}}{(S+1)^{3}}$ * Express the following function intermy of Heavigide unit step function and hence find their Laplace transform (1) F h $\bigcirc f(t) = \begin{cases} t & okt \\ 5 & t > 4 \end{cases}$ \mathcal{S}_{01}^{00} , $f(t) = f_{1}(t) + [f_{2}(t) - f_{1}(t)]u(t-\alpha)$ (by property iii) f(t) = t + [5-t]u[t-H] $\mathcal{L}[f(t)] = \mathcal{L}(t) + \mathcal{L}[(s-t)u(t-u)] - 0$ we have $\mathcal{L}(t) = \frac{1}{2}$ (n-sign of our

$$f(t+\theta) = 5-t$$
Replace t by $t+\theta$ to gdt $F(t)$

$$f(t) = 5-(t+\theta)$$

$$f(t) = 5-(t+\theta)$$

$$f(t) = 1-t$$

$$f(t) = 1-t$$

$$f(t) = 1-t$$

$$f(t) = 1-t$$

$$f(t+f) = \frac{1}{2} - \frac{1}{2} - \frac{1}{2}$$

$$f(t+f) = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2}$$

$$f(t+f) = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2}$$

$$f(t+f) = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2}$$

$$f(t+f) = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2}$$

$$f(t+f) = \frac{1}{2} - \frac{$$

$$p = get \ f(t) \ dp(t+\pi) - cos(t+\pi)$$

$$p(t) = \delta ln(t+\pi) - cos(t+\pi)$$

$$p(t) = \delta ln(t+\pi) - cos(t)$$

$$F(t) = \sum ln(t+cos(t))$$

$$l(t+\pi) = d[-sin(t+cos(t))]$$

$$= -\frac{1}{s^{2}+1} + \frac{s}{s^{2}+1}$$

$$d[f(t+\pi) = \frac{s-1}{s^{2}+1}$$

$$d[f(t+\pi) = \frac{s-1}{s^{2}+1}$$

$$d[f(t+\pi) = \frac{s-1}{s^{2}+1}$$

$$d[f(t+\pi) = \frac{s}{s^{2}+1}$$

$$d[f(t+\pi) = \frac{s}{s^{2}+1} + \frac{s}{s^{2}+1}$$

$$g = \frac{s}{s^{2}+1} + \frac{s}{s^{2}+1}$$

$$d[f(t+\pi) = \frac{s}{s^{2}+1} + \frac{s}{s^{2}+1} + \frac{s}{s^{2}+1}$$

$$d[f(t+\pi) = \frac{s}{s^{2}+1} + \frac{s}{s^{2}+1} + \frac{s}{s^{2}+1} + \frac{s}{s^{2}+1} + \frac{s}{s^{2}+1} + \frac{s}{s^{2}+$$

$$\begin{aligned} f(t-\pi_{h}) &= Cost - Sint \\ & To \quad gu \quad f(t) \quad replace \quad t \quad by \quad t + \pi/2 \\ F(t) &= cos(t+\pi/h) - Sin(t+\pi/2) \\ F(t) &= -\delta int \quad - cost \\ \downarrow [F(t)] &= J \begin{bmatrix} -Sint - Cost \end{bmatrix} \\ &= J \begin{bmatrix} -Sint \end{bmatrix} + J \begin{bmatrix} -cost \end{bmatrix} \\ &= -\frac{1}{S^{k+1}} \\ &= -\frac{1}{S^{k+1}} \\ &= -\frac{1}{S^{k+1}} \\ &= -\frac{1-S}{S^{k+1}} \\ &= -\frac{(S+1)}{(S^{k+1})} \\ &= -\frac{(S+1)}{(S^{k+1})} \\ \downarrow [f(t) - \pi/h) u(t + \pi/h)] = e^{\pi/h} \quad F(s) \\ \downarrow [(cost - Sint)u(t+\pi/h)] = e^{\pi/h} \quad F(s) \\ \downarrow [(cost - Sint)u(t+\pi/h)] = e^{\pi/h} \quad F(s) \\ \downarrow [f(t+1)] = \frac{1}{S^{k+1}} \\ &= \frac{e^{\pi/h}}{S^{k+1}} \\ \downarrow [f(t+1)] = \frac{1}{(S^{k+1})} \\ \downarrow [f(t+1)] = \frac{3}{(S^{k+1})} \\ \downarrow [f(t+1)] \\ \downarrow [f(t+1)] = \frac{3}{(S^{k+1})} \\ \downarrow [f(t+1)] \\ \downarrow [f(t+1)] \\ \downarrow [f(t+1)] \\ \downarrow [f(t+1)$$

 $f(t) = \begin{cases} 1 & 0 < t \leq 1 \\ t & 1 < t \leq 2 \\ t^* & t > 2 \end{cases}$ by property @ $f(t) = f_1(t) + [f_2(t) - f_1(t)]u(t-a) +$ [f3 (t) - f2 (t) Ju (t - b) $f(t) = 1 + [t - i]u[t - v] + [t^2 - t]u[t - 2] - 0$ d[f(t)] = d[i] + d[[t-i])u(t-i)] + d[[t-2)]flt-でうをでな. (1-t) u (1-2)] - E 22 60.K.T d[]= 1/2 but Apple admission (f[(t-1) u [t-1)] F(t-1) = t-1To get F(t) replace t by t t []] $\Rightarrow F(t-1) = t-1$ F(t) = t $d[F(t)] = d[t] \qquad d[t^n] = n! \qquad (1)$ $= 1! \qquad (1)$ $F[F(t)] = \frac{1}{3} = \frac{1}{3} = \frac{1}{5} = \frac{1}$ $d[f(t)] = F(s) = d[(t-1)(u(t-1)] = \frac{1}{2}e^{s}$ d[(t+2-t)u(t-2)] $d\left[lt^2-t\right)u\left[t-2\right]$ $G(t-2)=t^2-t$ to get & (t) replace t by t+2 $G_{1}(t) = (t+2)^{2} - (t+2)$

= t+H+Ht-t-2 1 (1) d [2] or $G(t) = t^2 + 3t + 2$ $\mathcal{A}[\mathcal{G}(t)] = \mathcal{A}[t^2] + 3\mathcal{A}[t] + \mathcal{A}[2]$ 2d[1]=2/ $=\frac{2!}{3}+3\cdot\frac{1!}{2}+\frac{2}{5}$ S-11 2/5- (1) of - (s-1) = 2/3 + 2/2 () $\mathcal{L}[G(t)] = \overline{G}(S) \implies \mathcal{L}[G(t-2)u[t-2)] = \overline{\mathcal{E}}^{\partial S}\overline{\mathcal{E}}(S)$ $J[(t^2-t)u(t-2)] = e^{2S}\bar{g}(S)$ $d[t^2-t)u[t-2)] = e^{23}[a_{3}^{2} + a_{3}^{2}]$ put these regults in () $d [f(t)] = \frac{1}{5} + \frac{e^{5}}{5^{2}} + \frac{e^{2S}(a_{5}^{2} + \frac{3}{5} + \frac{a_{5}}{5})$ no youngelf = [+] = [(1)] = d[+] Soin: by property @ $f(t) = f_1(t) + [f_2(t) - f_1(t)] u(t-a) +$ $[f_3(t) - f_2(t)]u(t-b)$ $f(t) = fo(t + [1 - cost]u(t-\pi) + [sint - i]u(t-2\pi)$ $\mathcal{J}[f(t)] = \mathcal{J}[uqt] + \mathcal{J}[(-wqt)u[t-\pi)] + \mathcal{J}[lsint-1)u[t-m]$

3 (2 [co, 8 t] = 05/ 5+ 2[c1-cost)ult-17)] > det Flt-17)=1-cost To get rit) replace t by t+IT $\cos(t+\pi) = -\cos t$ Fit) = 1-008 (++17) =1-(-cost)) ligin I 02 Cos function is - ve Fit) = 1+ cost in IDO $\mathcal{L}[F(t)] = \mathcal{L}[1 + \cos t]$ =+[1]++[cost] J[F(+)] = 1/2 + S/2+1 +[Fit]=F(S) $\mathcal{F}[\mathcal{F}(t-\pi)u[t-\pi)] = \bar{\mathcal{E}}^{\pi S} \bar{\mathcal{F}}(S) \quad (::a=\pi)$ $\mathcal{F}(1-\cos t)u(t-\pi)] = \bar{e}^{\pi S}(\frac{1}{5} + \frac{5}{5} + 1)$ 2[(sint - 1)ult - 217)] =) Let GLT-217) = Sint -1 TO get Git) replace t by t+211 $G(t) = Sin(t+2\pi) - 1$ $\sin(a\pi + t)$ = sint Glt) = Sint - 1 2TT+t lig in In In ION all brigoonus functiony are the d[g(t)] = d[sint - i] = 2 [sint] - 2 [i] + [G(H)] = /2+1 - 1/5 1 [G:1) = E(S)

 $J[Glt-2\pi)ult-2\pi)]=\bar{e}^{2\pi s}\bar{c}(s)$ $J\left[\begin{array}{c} (sint-1) & (t-2\pi) \end{array}\right] = \overline{e}^{2\pi s} \left[\frac{1}{s^2+1} - \frac{1}{s} \right]$ put au thye repults in $O\left[\frac{1}{s^2+1} - \frac{1}{s} \right]$ $J[J(+)] = \frac{s}{s^2 + 1} + e^{\pi s} (\frac{1}{s} + \frac{s}{s^2 + 1}) + e^{-2\pi s} (\frac{1}{s^2 + 1} + \frac{1}{s})$ Doyourgelf $F f(t) = \begin{cases} cost, o < t < 2\pi \\ cog2t, \pi < t < 2\pi \\ cog3t, t > 2\pi. \end{cases}$ (we property (1)) $\frac{\partial U_{i}}{\partial S_{i}} \neq [f(t)] = \frac{S}{S_{i}^{2} + 1} + \frac{S}{S_{i}^{2} + 1} = \frac{S}{S_{i}^{2} + 1} + \frac{S}{S_{i}^{2} + 1} - \frac{S}{S_{i}^$ $* f(t) = \begin{cases} c^{2t} & oxtx \\ 2, & t > 1 \end{cases}$ E (4) A] P (we property (1)) $dm_{i} alterti) + e^{-S}(a_{l} - c_{l-2}^{2})$ () Express the function $f(t) = \int \pi - t$, $o \perp t \leq \pi$ per intermy of unit step function (sint, tst point and hence find its laplace transform doing by the property of unit Step function $f(t) = f_1(t) + [f_2(t) - f_1(t) u(t-a)]$ $f(t) = \pi - t + [sint - (\pi - t)] (t - \pi)]$ $d[f(t)] = d[\pi - t] + d[(sint - \pi + t)] u(t - \pi)] = 0$ $d [\pi - t] = d [\pi] - d [t]$ = オイビュノータビセノ (: d[tn]=n!) = TT. 1/5 - 1/52 2[TT-t] = T/5-1/2

t

OC

DO

FIT-IT) = Sint-IT + t. ger FIT) replace t by t+IT. $F(t) = \sin(tt+\pi) - ft + t + \pi$ Fit) =-Sint + t A[F(H)] = d[-sint + t] = d[-sint] + d[+] $(1) = -1 + \frac{1}{5^2}$ $J[F(t)] = -\frac{1}{6^2+1} + \frac{1}{5^2}$ $\mathcal{F}[F(t-\pi)u(t-\pi)] = \tilde{e}^{\pi S} \tilde{F}(S)$ $d\left[(sint - \pi + t)u(t - \pi)\right] = e^{-\pi s} \left(\frac{1}{(s+1)} + \frac{1}{(s^2)}\right)$ put there are in O $J[f(t)] = (T_{S} - V_{S}^{2}) + e^{-TS} (-1_{S} + V_{S}^{2})$ $= (T_{S} - \frac{1}{s^{2}}) + e^{-TS} \left(-\frac{8^{2} + 8^{2} + 1}{s^{2}(s^{2} + 1)} \right)$ $J[f(t)] = (T_{S} - \frac{1}{S^{2}}) + e^{TS} \left(\frac{1}{S^{2}(S^{2}+1)}\right)$ the Lut

$$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} perfine & heavylde finit Skp punction, \\ using einit Step function find daplace \\ rrany form of fill = \left\{ \begin{array}{l} (int o ster fill) \\ (singt n o ster fill) \\ (singt t t ger fill) \\ (singt t fill) \\ (singt t ger fill) \\ (singt t$$

ochoc heavyide fu X [Filt] = F(S) $d[F(t-\pi)]u[t-\pi y]=e^{\pi y}F(y)$ A[sin2t - sint]ult-17)] = e S 2/2+4 + 12 det alt-2TT) = sin3t - sin2t get alt) replace t by t+2TT Git) = Sin3 /t + 217) - Sin2 (++211) $= Sin(3t + 6\pi) - Sin(2t + 2\pi) = (11)$ Sin (312] + 1 Sin (310 + Sin (360+2t GIT) = Sin 3t - Sin 2t $d \left[G(t) \right] = d \left[Sin 3t - Sin 2t \right]$ =2[sinst]-&:[sinzt] d[alt)] = 3/2 - 3/2+4 $d \left[\mathcal{L}(t) \right] = \mathcal{L}(S)$ $J[u[t-2\pi)u[t-2\pi)] = e^{-2\pi s} \bar{q}(s)$ 1.5% $d \left[(\sin 3t - \sin 2t) \right] = e^{-2\pi s} \left[\frac{3}{s^2 + 9} - \frac{3}{s^2 + 4} \right]$ $u(t - 2\pi)$ (taiz-) - (-sint) Mizt tent?

Inverse daplace Fransforms if d[fiti]= F(S), then fits is cauled invende Laplace transform of F.(S) & y denoted by 2-1/ F(S)] They we can say that $J[f(t)] = \overline{f}(s) \Leftrightarrow J^{-1}[\overline{f}(s)] = f(t)$ g: 2(1)=1/6=> 2-1(1/5)=1 $d(\cos at) = \frac{3}{5^2 + a^2} =) d^{-1}(\frac{5}{5^2 + a^2}) = \cos at$ NOTE: O 2- [1/3] = 1 O L' [s-a] = eat [Dig] to () @ 2 5 5 * + a2] = sinat 302] . 0 $\mathbb{C} \mathcal{L}^{-1} \left[\frac{S}{S^2 - a^2} \right] = Coshat$ (a) $d^{-1}\left[\frac{a}{s^2-a^2}\right]$ = Sinhat (3) $J^{-1}\left[\frac{1}{s^2+a^2}\right] = \frac{ginat}{a}$ $\textcircled{D} d^{-1} \left[\frac{t}{s^{n+1}} \right] (n>-1) = \frac{t^n}{f(n+1)}$ (1) $d^{-1} \left[\frac{1}{s^{n+1}} \right] h = 1, 2, 3 = t_{h_1}^n$

Noto: O d'[s-a] = eat $= \frac{1}{100} + \frac{1}{100} = e^{t}$ $= \frac{1}{100} = e^{t}$ $= J^{-1} \left[\frac{s}{s^2 + a^2} \right] = cosat$ $J^{-1} \left[\frac{S}{S^2 + 9} \right] = co 8 3 t$ (beca) $\textcircled{a} \neq \frac{1}{s^2 + a^2} = \$inat$ $\mathcal{J}^{-1}\left[\frac{3}{S^2+9}\right] = \sin 3t$ $J^{-1}\left[\frac{8}{5^2-16}\right] = co8h4t$ $() \neq^{-1} \left[\frac{1}{s^2 + a^2} \right] = \frac{ginat}{a}$ $J^{-1}\left[\frac{1}{s^2+5}\right] = \frac{1}{\sqrt{5}} \sin\left(\sqrt{s}t\right)$ $\mathcal{F} = \frac{1}{\sqrt{2}} \left[\frac{\alpha}{\sigma^2 - \alpha^2} \right] = Sinhat$ $\mathcal{L}^{-1}\left[\frac{H}{S^2-16}\right] = Sinh4t$ d-1[-36] = Sinh6t

 $\partial d'(\frac{1}{5^{3}h}) = \frac{tY_{2}}{\Gamma(\frac{3}{2})} = \frac{tY_{2}}{Y_{2}\sqrt{\pi}} = \partial Y_{2}$ @ 2-1 (1/34) = t/31 $\int [c, F(s) + G \overline{g}(s)] = c, t = [F(s)] + G t = [\overline{g}(s)]$ End the inverse Laprace trany form of the O 1 + 3 - 4 3+2 + 25+5 - 35-2 $\frac{Sol^{n_{0}}}{2} = d^{-1} \left[\frac{1}{S+2} \right] + d^{-1} \left[\frac{3}{2S+5} \right] - d^{-1} \left[\frac{4}{3S-2} \right]$ $= d^{-1} \left[\frac{1}{s+2} \right] + 3 d^{-1} \left[\frac{1}{2s+5} \right] - 4 d^{-1} \left[\frac{1}{3s-2} \right]$ $= e^{2t} + 3d^{-1} \left[2(s + (5/2)) \right] - Hd^{-1} \left[\frac{1}{3(s - 2/3)} \right]$ $= e^{-2t} + 3_{1} d^{-1} \left[\frac{1}{S+5_{12}} \right] - \frac{4_{1}}{3} d^{-1} \left[\frac{1}{S-\frac{2}{3}} \right]$ $= e^{-2t} + 3_{12} e^{-5_{12}t} - 4_{13} e^{2_{13}t}$ (2) $\frac{2S-5}{4S^2+25} + \frac{8-6S}{16S^2+9}$ $\frac{2S}{HS^2+25} - \frac{5}{HS^2+25} + \frac{8}{16S^2+9} - \frac{6S}{16S^2+9}$ $2 L^{-1} \left[\frac{S}{HS^2 + 25} \right] - 5 L^{-1} \left[\frac{1}{HS^2 + 25} \right] + 8 L^{-1} \left[\frac{1}{16S^2 + 9} \right] - 6 L^{-1} \left[\frac{S}{16S^2 + 9} \right]$ $2d^{-1}\left[\frac{S}{H(s^{2}+\frac{25}{4})}-5L^{-1}\left[\frac{1}{H(s^{2}+\frac{25}{4})}\right]+8L^{-1}\left[\frac{1}{16(s^{2}+\frac{9}{4})}\right]-6L^{-1}\left[\frac{S}{L(s^{2}+\frac{9}{4})}\right]$ $\frac{2}{4} \left[\frac{s}{s^{2} + (\frac{s}{2})^{2}} - \frac{5}{4} z^{-1} \left[\frac{1}{s^{2} + (\frac{s}{2})^{2}} + \frac{8}{16} z^{-1} \left[\frac{1}{s^{2} + (\frac{s}{2})^{2}} - \frac{6}{16} z^{-1} \right] \frac{s}{16} \left[\frac{s^{2} + (\frac{s}{2})^{2}}{16} + \frac{6}{16} z^{-1} \right] \frac{s}{16} \left[\frac{s^{2} + (\frac{s}{2})^{2}}{16} + \frac{6}{16} z^{-1} \right] \frac{s}{16} \left[\frac{s^{2} + (\frac{s}{2})^{2}}{16} + \frac{6}{16} z^{-1} \right] \frac{s}{16} \left[\frac{s^{2} + (\frac{s}{2})^{2}}{16} + \frac{6}{16} z^{-1} \right] \frac{s}{16} \left[\frac{s^{2} + (\frac{s}{2})^{2}}{16} + \frac{6}{16} z^{-1} \right] \frac{s}{16} \left[\frac{s^{2} + (\frac{s}{2})^{2}}{16} + \frac{6}{16} z^{-1} \right] \frac{s}{16} \left[\frac{s^{2} + (\frac{s}{2})^{2}}{16} + \frac{6}{16} z^{-1} \right] \frac{s}{16} \left[\frac{s^{2} + (\frac{s}{2})^{2}}{16} + \frac{6}{16} z^{-1} \right] \frac{s}{16} \left[\frac{s^{2} + (\frac{s}{2})^{2}}{16} + \frac{6}{16} z^{-1} \right] \frac{s}{16} \left[\frac{s^{2} + (\frac{s}{2})^{2}}{16} + \frac{6}{16} z^{-1} \right] \frac{s}{16} \left[\frac{s^{2} + (\frac{s}{2})^{2}}{16} + \frac{6}{16} z^{-1} \right] \frac{s}{16} \left[\frac{s^{2} + (\frac{s}{2})^{2}}{16} + \frac{6}{16} z^{-1} \right] \frac{s}{16} \left[\frac{s^{2} + (\frac{s}{2})^{2}}{16} + \frac{6}{16} z^{-1} \right] \frac{s}{16} \left[\frac{s^{2} + (\frac{s}{2})^{2}}{16} + \frac{6}{16} z^{-1} \right] \frac{s}{16} \left[\frac{s^{2} + (\frac{s}{2})^{2}}{16} + \frac{6}{16} z^{-1} \right] \frac{s}{16} \left[\frac{s^{2} + (\frac{s}{2})^{2}}{16} + \frac{6}{16} z^{-1} \right] \frac{s}{16} \left[\frac{s^{2} + (\frac{s}{2})^{2}}{16} + \frac{6}{16} z^{-1} \right] \frac{s}{16} \left[\frac{s^{2} + (\frac{s}{2})^{2}}{16} + \frac{6}{16} z^{-1} \right] \frac{s}{16} \left[\frac{s^{2} + (\frac{s}{2})^{2}}{16} + \frac{6}{16} z^{-1} \right] \frac{s}{16} \left[\frac{s^{2} + (\frac{s}{2})^{2}}{16} + \frac{6}{16} z^{-1} \right] \frac{s}{16} \left[\frac{s^{2} + (\frac{s}{2})^{2}}{16} + \frac{6}{16} z^{-1} \right] \frac{s}{16} \left[\frac{s^{2} + (\frac{s}{2})^{2}}{16} + \frac{6}{16} z^{-1} \right] \frac{s}{16} \left[\frac{s}{16} z^{-1}$

No EPLAT - FILE BIR = Х Cosh5t - 58inh5t - 4 cosh3t = У Cosh5t - Х sinh5t - 4 cosh3t = У Cosh5t - Х sinh5t - 4 cosh3t 1/208(5/2)t - 5/4 Sin(5/2)t + 1/2 Sin(3/4)t $\frac{1}{3}\cos(5_{12})t - \frac{3}{2}\sin(5_{12})t + \frac{2}{12}\sin(3_{12})t - \frac{3}{8}\cos(3_{12})t = \frac{1}{4}\left(\frac{e^{5_{12}t} + e^{-5_{12}t}}{2} - \frac{e^{5_{12}t} + e^{-5_{12}t}}{2}\right) - u\cos h st$ $= \frac{1}{\sqrt{4}} \left\{ \frac{9e^{-5/2t}}{2t} \right\} - 4 \cos h3t$ = $\frac{1}{\sqrt{4}} \left\{ \frac{e^{-5/2t}}{2t} - 4 \cos h3t \right\}$ = $\frac{1}{\sqrt{4}} \left\{ \frac{e^{-5/2t}}{2t} - 4 \cos h3t \right\}$ = $\frac{85^{-5}}{85^{-50}} + \frac{45}{9-5^{-5}}$ $\frac{1}{3} \cos(\frac{5}{3})t - \frac{1}{2} \sin(\frac{5}{2})t + \frac{3}{3} \sin(\frac{3}{4})t - \frac{3}{8} \cos(\frac{3}{4})t$ $\frac{S+2}{S^{2}+36} + \frac{HS-1}{S^{2}+25} \xrightarrow{OTY}{}^{6} \cos 6t + \frac{1}{3} \sin 6t + 44 \cos 5t} = d^{-1} \left[\frac{2S-5}{2(4S^{2}-25)} + \frac{1}{4} d^{-1} \left[\frac{S}{9-S^{2}} \right] \right]$ Doyoualeif $\frac{\partial S-5}{\delta S^{2}-50} + \frac{HS}{9-S^{2}} \xrightarrow{0.35} \frac{1}{4} \cdot e^{-5t/2} - 4(0.8h_{3}t) = \frac{1}{2} d^{-1} \left[\frac{\partial S-5}{\partial S^{2}-5^{2}} \right] + \frac{1}{4} d^{-1} \left[\frac{S}{S^{2}-9} \right]$ $\frac{d_{M}}{2} = \frac{2S}{8s^2 - 50} - \frac{5}{8s^2 - 50} + \frac{4S}{9 - s^2} = \frac{3}{2} d^{-1} \left[\frac{2S - 5}{(2S + 5)(2S - 5)} \right] - 4 \cos 2\theta dt$ = 1/3+7 [1] -4 cosh3t $= \frac{\cancel{3}}{\cancel{3}} \frac{5}{(us^2 - 25)} - \frac{5}{\cancel{3}} \frac{1}{(us^2 - 25)} + \frac{\cancel{4}}{9 - s^2}$ $= \frac{1}{3} d^{-1} \left[2(5 + 5/2) - 4 \cos h 3 t \right]$ $\frac{8}{4} = \frac{5}{4} \frac{5}{(s^{2} - (5_{5})^{2})} + \frac{5}{8} \frac{5}{(s^{2} - (5_{5})^{2})} + \frac{4s}{s^{2} - 9} = \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{s^{2} - 9} = \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{s^{2} - 9} = \frac{1}{3} \frac{1}{3} \frac{1}{s^{2} - 9} = \frac{1}{3} \frac{1}{s^{2} - 9} = \frac{1}{3} \frac{1}{s^{2} - 9} \frac{1}{s^{2} - 9} = \frac{1}{3} \frac{1}{s^{2} - 9} \frac{1}{s^{2} - 9} = \frac{1}{3} \frac{1}{s^{2} - 9} \frac{1}{s^{2} - 9} \frac{1}{s^{2} - 9} = \frac{1}{3} \frac{1}{s^{2} - 9} \frac{1}{s^{2} -$

 $\frac{(3+2)^3}{8^6} = \frac{3^3+8+65^2+128}{5^6}$ $=\frac{1}{3}+\frac{8}{5}+\frac{6}{5}+\frac{12}{5}$ $= d^{-1} \left[\frac{1}{s^3} \right] + d^{-1} \left[\frac{8}{s^6} \right] + d^{-1} \left[\frac{6}{s^4} \right] + d^{-1} \left[\frac{12}{s^3} \right]$ $= 1^{-1} \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} + 8 d^{-1} \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} + 6 d^{-1} \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} + 12 t^{-1} \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix}$ $= \frac{t^{2}}{2!} + 8 \cdot \frac{t^{5}}{5!} + 6 \cdot \frac{t^{3}}{3!} + 12 \cdot \frac{t^{4}}{4!}$ $= \frac{t_{2}^{2}}{2} + \frac{8}{120} \frac{t_{3}^{5}}{6} + \frac{18}{24} \frac{t_{4}^{4}}{242}$ $J^{-1}\left[\frac{(s+2)^3}{6}\right] = \frac{t^2}{\sqrt{2}} + \frac{t^3}{\sqrt{5}} + \frac{t^4}{2}$ Doyourself * 3(82-1)2 Om: 3/2 [1-t'+ t'] ENROSH - HCOSH 3

Computation of the inverge transform of 609 F(S) $w \cdot k \cdot \tau d[f(t-a)u(t-a)] = e^{aS} \overline{f}(S)$ $d^{-1}[\bar{e}^{as}\bar{f}(s)] = f(t-a)u(t-a)$ working procedure • In the given function we should observe the pryence of E^{ag} first and identify the remaining payt of the function to be Taking the inverse of FCS) we obtain flts called ay f(S). 3) The required inverse of e^{as} F(s) is Obtained by replacing t by t-a in obtained by replacing t by enit Step function flt) to be multiplied by unit Step function Eind the inverse Laplace transform of the following $O \quad \frac{1+e^{-3S}}{8^2}$ $\int_{0}^{1} \frac{e^{-3S}}{\sqrt{s^{2}}} = (t^{-3})u[t^{3}]$ $\frac{\mathcal{B}_{01}}{\mathcal{B}_{01}} d^{-1} \left[\frac{1+e^{3S}}{e^{2}} \right]$ $= d^{-1} \left[\frac{1}{5^2} \right] + d^{-1} \left[\frac{e^{-3S}}{5^2} \right] d^{-1} \left[\frac{1}{5^2} \right] = t$ = t + (t - 3)u(t - 3) $d^{-1} \left[\frac{1+e^{-3S}}{s^{2}} \right] = t + (t-3)u(t-3)$

@ 3/3 + 200 - 30-25 Sen: 2-1[3/3+ 2005 - 3007 $= 2^{-1} \begin{bmatrix} 3_{6^2} \end{bmatrix} + 2^{-1} \begin{bmatrix} 2 e^{5} \\ 5^{3} \end{bmatrix} - 2^{-1} \begin{bmatrix} 3 e^{2} \\ 5 \end{bmatrix}$ $=3d'[\frac{1}{3}]+2d'[\frac{e^{5}}{e^{3}}]-3d'[\frac{e^{2}}{e^{3}}]=0$ $\begin{array}{c} t^{-1} \left[\frac{1}{2s^{2}} \right] = \frac{t}{11} \\ t^{-1} \left[\frac{1}{2s^{2}} \right] \\ t^{-1} \left[\frac{1}{2s^{2}} \right] = \frac{t}{11} \\ t^{-1} \left[\frac{1}{2s^{2}} \right] = \frac{t}{11} \\ t^{-1} \left[\frac{1}{2s^{2}} \right] \\ t^{-1} \left[\frac{1}{2s^{2}} \right] \\ t^{-1} \left[\frac{1}{2s^{2}} \right] = \frac{t}{11} \\ t^{-1} \left[\frac{1}{2s^{2}} \right] \\ t^{-1} \left[\frac{$ 2-1 [Y3] = t2 = t2 Fist 2-1 [Ys] = hona @ become $= 3t + 2 \cdot (t - 1)^{2} u(t - 1) - 3(1) u(t - 2)$ $J^{-1} \begin{bmatrix} 3/_{5} + 2e^{-S} - 3e^{-2S} \\ 5^{3} \\ 5^{3} \\ 5^{-3} \\ 5^{-3} \end{bmatrix} = 3t + lt - nult - n + 3ult - 2$ the doverse daplace manyform of $\frac{e^{-nS}}{s^2+1} + \frac{ge^{-2\pi S}}{e^2+H}$ $\frac{\mathcal{G}_{0}}{\mathcal{G}_{0}}^{n}; \quad d^{-1} \left[\frac{e^{\pi S}}{s^{2}+1} + \frac{Se^{2\pi S}}{s^{2}+H} \right] = d^{-1} \left[\frac{e^{\pi S}}{s^{2}+1} \right] + d^{-1} \left[\frac{Se^{2\pi S}}{s^{2}+H} \right] = 0$ 2 [10]2t] = 3+4 $w \cdot \kappa \cdot \tau \cdot d^{-1} \left[\frac{1}{g^2 + 1} \right] = Sint$ $d^{-1} \left[\frac{3}{3^2 + 4} \right] = d^{-1} \left[\frac{3}{3^2 + 2^2} \right] = \cos 2t \quad \text{int}$ d-1 [s-+4]=cof2t,

 $sinlt-\pi_{yult-\pi_{yt}+cost}+2\pi_{yult-2\pi})$ cogatult-any 2-1 [ens + se 2157 = - Sintult-11)+ Sel. Doyeurself ose sta + TES $\underbrace{\partial W}: L^{-1} \left[\frac{S e^{-9/2} + \pi e^{-S}}{s^2 + \pi^2} \right] = \underline{Sin\pi} \pm u(t - \frac{1}{2})$ -SinTtut $\frac{d^{-1}\left[\frac{se^{y_2} + \pi e^s}{s^2 + \pi^2}\right]}{\left[\frac{s^2}{s^2 + \pi^2}\right]} = sin\pi t \left[u(t - y_2) - u(t - t)\right]$ Coshas Coshas = Coshas x e Coshas $= e^{-3S} \left[\frac{e^{3S} + e^{2S}}{2} \right]$ manytom $= \frac{1}{3} \left[\frac{e^{-s} + e^{-5s}}{s^2} \right]$ $\frac{\cos has}{e^{39} g^2} = \frac{1}{3} \int \frac{e^{-5}}{5^2} + \frac{e^{-55}}{5^2} \int \frac{e^{-55}}{5^2} = \frac{1}{3} \int \frac{e^{-55}}{5^2} + \frac{e^{-55}}{5^2} + \frac{e^{-55}}{5^2} \int \frac{e^{-55}}{5^2} + \frac{e^{-55}}{5^2} + \frac{e^{-55}}{5^2} \int \frac{e^{-55}}{5^2} + \frac{e^$ $J^{-1} \left[\frac{\cos 2 \cos 2}{\cos 2} \right] = \frac{1}{2} \left\{ J^{-1} \left[\frac{e^{-S}}{s^{2}} \right] + J^{-1} \left[\frac{e^{-S}}{s^{2}} \right] \right\}$

1 20 KIT d- [K2] = I $\frac{1}{\left[\frac{\cos h2S}{3^{3}}\right]^{2}} = \frac{1}{3} \left\{ \frac{(t-i)u(t-i)}{1-1} + \frac{(t-s)u(t-s)}{1-1} \right\}$ Reyoungelf ((D) (1-55)(2-525) $\frac{s_{01}^{n}}{s^{3}} \frac{(1-e^{-s})(2-e^{2s})}{s^{3}} = \frac{2-e^{2s}-2e^{-s}+e^{-s}-e^{-2s}}{s^{3}}$ $J^{-1} \int \frac{(1-e^{-S})(2-e^{-2S})}{S^3} = J^{-1} \int \frac{2}{S^3} - \frac{2S}{S^3} + \frac{2S}{S^3} \int \frac{2}{S^3} = J^{-1} \int \frac{2}{S^3} \frac{2}{S^3} + \frac{2S}{S^3} \int \frac{2}{S^3} \frac{2}{S^3} + \frac{2S}{S^3} \int \frac{2}{S^3} \frac{2}{S^3} + \frac{2S}{S^3} \frac{2}{S^3} + \frac{2S}{S^3} \int \frac{2}{S^3} \frac{2}{S^3} \frac{2}{S^3} + \frac{2S}{S^3} \frac{2}{S^3} + \frac{2S}{S^3} \frac{2}{S^3} + \frac{2S}{S^3} \int \frac{2}{S^3} \frac{2}{S^3} \frac{2}{S^3} \frac{2}{S^3} + \frac{2S}{S^3} \frac{2}{S^3} \frac{2}{S^3}$ $= d^{-1} \left[\frac{2}{5^3} \right] - d^{-1} \left[\frac{e^{2S}}{5^3} \right] - d^{-1} \left[\frac{3e^{-S}}{5^3} \right] + L^{-1} \left[\frac{e^{-3S}}{5^3} \right]$ $= 2 L^{-1} \left[\frac{L^3}{5^3} \right] = L^{-1} \left[\frac{e^{-2S}}{5^3} \right] = 2 L^{-1} \left[\frac{e^{-S}}{5^3} \right] + L^{-1} \left[\frac{e^{-S}}{5^3} \right]$ $= \partial \cdot \frac{t^{2}}{2!} - \frac{(t-2)^{2}}{2!}u(t-2) - \partial \frac{(t-1)^{2}}{2!}u(t-1)$ $+ (t-3)^2 u(t-3)$ $t^{2} - (t-2)^{2}u(t-2) - (t-1)^{2}u(t-1) + (t-3)^{2}u(t-3)$ $t^{2} - (t-1)^{2}u(t-1) - (t-2)^{2}u(t-2) + \frac{(t-3)^{2}u(t-3)}{2}$

Toverge transform by completing the Square ove have property that if d[f(t)] = f(s) then $4\left[e^{at}f(t)\right]=\overline{f}(s-a) \Rightarrow A^{-1}\left[\overline{f}(s)\right]=f(t)=0$ =) $2^{-1} [F(S-\alpha)] = e^{\alpha t} f(t) - (2)$ from O and O we have $d^{-1}[\bar{f}(s-\alpha)] = e^{\alpha t} L^{-1}[\bar{f}(s)] = 3$ working procedure O Given $\overline{f}(s) = \phi(s)$ = (25-s)(25-1)PS2+95+7 we fight express (ps=+9s+r) in the form (s-a)2 tb2 and later express pls) in terms of (s-a) so that given function of. S reducy to a function S-a Que we 3 to obtain the regult The engress que in termy of US-a) to engress que transform. * Find the inverse laplace transform of the following functions D 8+5 - (1-1) + (1-1) + (1-8²-65+13 $\frac{\mathcal{S}_{0}}{\mathcal{S}_{0}} \stackrel{n!}{=} d^{-1} \left[\frac{S+5}{S^{2}-6S+13} \right] = d^{-1} \left[\frac{S+5}{S^{2}-2x3S+13} \right]$

 $= d^{-1} \frac{6+5+3-3}{5^2-65+9-9+13}$ $= d^{-1} \left[\frac{s+3+5+3}{(s-3)^2 - 9+13} \right]^{1/2}$ $= d^{-1} \frac{3+5+8}{(S-3)^2+H} = 0$ $= d^{-1} \left[\frac{(s-3) + 8}{(s-3)^2 + 3^2} \right]$ here a= 3 and S-3 changy to S $= C^{32} L^{-1} \left[\frac{s+8}{s^2+2^2} \right]$ $= e^{3t} \int \frac{1}{\sqrt{3^2+2^2}} + \frac{1}{\sqrt{3^2+2^2}} = \frac{8}{\sqrt{3^2+2^2}}$ $= e^{3t} \left\{ \cos 2t + \frac{1}{9} L^{-1} \left[\frac{2}{s^2 + 2^2} \right] \right\}$ = 03 t { cos2t + 4. Sinat } $J^{-1}\left[\frac{S+5}{S^2-6S+13}\right] = e^{3t}\left[\cos(2t) + 4\sin(2t)\right]$ (2) (2+2)(2)
(2+2)(2)
Solⁿ: J-1 (C+2)(2)
(2+1)⁴
(2+1)⁴

(S+2) = \$ (S+1)4 Reation $\overline{f}(S) = \frac{S+2}{(S+2)^{4}}$ we shall fight find filt(s) = $L^{-1}\left[\frac{s+2}{(s+1)^{H}}\right] = L^{-1}\left[\frac{(s+1)+1}{(s+1)^{H}}\right]$ Sti changy to = e I S+1 $= e^{t} \left\{ F'(S_{4}) + F'(S_{4}) \right\}$ \$ (3+1)(5+3 $= e^{t} \int L'(Y_{3}) + L''(Y_{3}) \Big\}$ $= e^{t} \int_{21}^{2} \frac{t^{2}}{21} + \frac{t^{3}}{3!} \int_{21}^{2} \frac{t^{3}}{2!} = e^{t} \int_{21}^{2} \frac{t^{2}}{2!} + \frac{t^{3}}{3!} \int_{21}^{2} \frac{t^{3}}{2!} + \frac{t^{3}}{3!} + \frac{t^{3}}{3!}$ 3 $= e^{-t} \int \frac{t^2}{2} + \frac{t^2}{6} \int e^{-t} \frac{1}{2} + \frac{t^2}{6} \int e^{-t} \frac{1}{6} \int e^{-t} \frac{1}{6} + \frac{t^2}{6} \int e^{-t} \frac{1}{6} \int e$ $f'\left[\frac{e^{s}}{e^{s}}\frac{g+2}{(s+0)}\right] = e^{(t-1)}\left[\frac{(t-1)^{2}}{2} + \frac{(t-0)^{3}}{6}\right]u(t-1)$ +5)(5+5)(1+5)3 kg 50 kk A(5+1)/27 2) (5+3) + BS

In verye franyform by the method of Partial fractions W.K.T the method of partial fractiony is a technique of converting an algebraic function \$19) in to a sum. (VCS) the nature of termy in Depending on the nature of sum of 4(3) we have to split into a sum of Various terms with Constants A, B, C, D ... which can be determined. Later the inverge is found term by term. $\textcircled{P} \frac{1}{S(S+I)^2} = \frac{A}{S} + \frac{B}{S+I} + \frac{C}{(S+I)^2}$ $\textcircled{B} \frac{1}{S(S^2+1)} = \frac{H}{S} + \frac{BS+C}{S^2+1}$ * Find the inverge caplace transform of the following functions 0 1 S[S+D (S+2) (S+3) $\frac{B}{S(S+1)(9+2)(S+3)} = \frac{A}{S} + \frac{B}{S+1} + \frac{C}{S+2} + \frac{D}{S+3}$ ×14 B.S by 8(S+1)(S+2)(S+3) I = A(s+1)(s+2)(s+3) + BS(s+2)(9+3) + CS(s+1)(9+3)+ D(S) (S+1) (S+2) put S=0

 $\int \frac{1}{(3(S+1)(S+2)(S+2))} = \frac{1}{6} - \frac{1}{6} e^{-t} + \frac{1}{6} e^{-2t} - \frac{1}{6} e^{-3t}$ (a) Find $1^{-1} \left[\frac{3S+2}{S^2-S-9} \right]$ $\frac{3S+2}{S^2-S+2} = \frac{3S+2}{(S+2)(S+1)}$ $\frac{3S+2}{S^2-S+2} = \frac{3S+2}{(S+2)(S+1)}$ $\frac{3S+2}{(S-2)(S+1)} = \frac{3S+2}{(S-2)(S+1)}$ $\frac{3S+2}{(S-2)(S+1)} = \frac{3S+2}{S-3} = \frac{3S+2}{S+1}$ $\frac{3S+2}{(S-2)(S+1)} = \frac{3S+2}{S+2} = \frac{3S+2}{S+1}$ $\frac{3S+2}{(S-2)(S+1)} = \frac{3S+2}{S+1} = \frac{3S+2}{S+1} = \frac{3S+2}{S+1}$ $\frac{3S+2}{S-3} = \frac{3S+2}{S+1} = \frac{3S+2}{$ 3S+a = A(S+1) + B(S-2)put S=2 3(a)+a = A(a+b)+B(a)8=3A A=8/3 put S=-1 $3(-1) + \partial = A(0) + B(-3)$ f = +3BB=13/1 put A and B in O $\frac{33 + 2}{(3-2)(S+1)} = \frac{\frac{8}{3}}{\frac{3}{3}-2} + \frac{\frac{1}{3}}{\frac{3}{3}+1}$ $\frac{\frac{1}{3}}{\frac{3}{3}+2} = \frac{8}{3(s-2)} + \frac{1}{3(s+1)}$ $\frac{3}{3(s+2)} = \frac{8}{3(s-2)} + \frac{1}{3(s+1)}$ Scanned with CamScanne

 $F'\left[\frac{33+2}{(3-2)(S+1)}\right] = \frac{8}{3}d^{-1}\left[\frac{1}{S-2}\right] + \frac{1}{3}d^{-1}\left[\frac{1}{S+1}\right]$ $F' \begin{bmatrix} 3s + 2 \\ (s-2)(s+1) \end{bmatrix} = \frac{8}{3}e^{2t} + \frac{1}{3}e^{t}$ $\frac{s+2}{s^2(s+3)}$ $\frac{Sol^{?'}}{S^2(S+3)} = \frac{A}{S} + \frac{B}{S^2} + \frac{C}{S+3}$ ×14 B.S by S2 (S+3) $S+2 = AS(S+3) + B(S+3) + C8^2 - 0$ S=0 S=0 + B(3) + 0 S=0 + B(3) + 0 S=0put 08=0 2 = 0 + B(3) + 03B = 2 B = 2/3 put 8 = - 3 -3+2 = AS(0) + B(0) + 9C-1 = 0 + 0 + 90 $C = -\frac{1}{9}$ equating the co-efficient of ston both sidy of O 0+8+0= 0 = A + CA = -C $A = -(-\frac{1}{9})$ put A, B, C values
in O

n C=-3 Equating the Co-efficient of 5° on both sidy of 00 coe get O=A+C STARS 0= A-3 A=3 put A. B. C Vorue in O PY-A $\frac{HS+5}{(S+1)^{2}(S+2)} = \frac{3}{S+1} + \frac{1}{(S+1)^{2}} + \frac{-3}{S+2}$ $\int \frac{1}{(S+1)^{2}(S+2)} = 3 d^{-1} \left[\frac{1}{S+1} + d^{-1} \left[\frac{1}{(S+1)^{2}} - 3 d^{-1} \right] \frac{1}{S+2}$ $= 3e^{t} + e^{t} d^{-1} [Y_{S^2}] - 3e^{2t}$ $\int \left[\frac{HS+5}{(S+U^{2}(S+2))} = 3e^{t} + e^{t} t - 3e^{2t} e^{t} \right]$ $\begin{array}{c} \widehat{B} & \frac{S+2}{S^{2}(S+3)} \\ & \underbrace{\underbrace{B}_{01}^{n}}_{S^{2}(S+3)} & \underbrace{B}_{S^{2}(S+3)} & = \underbrace{A}_{S} + \underbrace{B}_{S^{2}} + \underbrace{C}_{S+3} & \textcircled{O} \\ & \underbrace{\underbrace{B}_{01}^{n}}_{S^{2}(S+3)} & \underbrace{B}_{S} + \underbrace{B}_{S^{2}} + \underbrace{C}_{S+3} & \textcircled{O} \\ \end{array}$ x14 B.S by S2(S+3) $8+2 = A8(S+3) + B(S+3) + CS^2 0 \Rightarrow 3B = 2 \Rightarrow B = \frac{2}{3}$ put S=0 2=0+30+0=> $p_{wt} = -3$ -3+2 = A(0) + 0 + c(-3)^2 -1 = 90C = -Yq

equating the Co-efficient & S' on both side & we get O=A+C :. A=-C=-(-Ya) 8-0 A=Y9 put A. B. C values in O $\frac{S+2}{S^2(S+3)} = \frac{y_9}{S} + \frac{2/3}{S^2} + \frac{-y_9}{S+3}$ $\frac{8+2}{8^2(s+3)} = \frac{1}{9s} + \frac{9}{3} \cdot \frac{1}{5^2} + \frac{1}{9(s+3)}$ $d^{-1}\left[\frac{3+2}{s^{2}(s+3)}\right] = \frac{1}{9}d^{-1}\left[\frac{1}{5}\right] + \frac{3}{3}d^{-1}\left[\frac{1}{5^{2}}\right] - \frac{1}{9}L^{-1}\left[\frac{1}{3+3}\right]$ $= \frac{1}{9}(1) + \frac{2}{3}t - \frac{1}{9}e^{3t}$ $J^{-1}\left[\frac{s+2}{s^{2}(s+3)}\right] = \frac{1}{9} + \frac{2}{3}t - \frac{1}{9}e^{-3t}$ $\underbrace{ \underbrace{(3S+1)}_{CS} \underbrace{(3S+1)}_{CS}$ $\frac{Sol^{n'}}{(S-1)(S^{2}+1)} = \frac{A}{S-1} + \frac{BS+C}{S^{2}+1} = 0$ ×14 B.S by (S-1)(S2+1) $3S+1 = A(S^2+1) + (BS+C)(S-1) - (BS+C)(S-1)$ put S=1; H=A(1+1)+(B(1)+C)(0) H= 2A+0 (2) A= 8+8-0P = 1-2A=4 A=2

par of=0 1= A(1) + (B(0) + C)(0-1) 1 = A + (0 + c)(-1)1 220 200 (5) \$ Ward I = A + (C)(-1)1 = A-C W.K.T A=2 1=2-0 1090 equating the co-effluent of s2 on B-S q (i) coe get 0=A+B : B=-A <u>B=-2</u> 0=> $\frac{3S+1}{(S-1)(S+1)} = \frac{1}{4S} \frac{3}{S-1} + \frac{-2S+1}{S^2+1}$ $\frac{3S+1}{(S-1)(S^2+1)} = \left[\frac{2}{8-1}\right] + \left[\frac{-2S}{S^2+1}\right] + \left[\frac{1}{S^2+1}\right]$ $d^{-1}\left[\frac{3S+1}{(S-1)(S^{2}+1)}\right] = 2d^{-1}\left[\frac{1}{S-1}\right] - 2d^{-1}\left[\frac{S}{S+1}\right] + d^{-1}\left[\frac{1}{S^{2}+1}\right]$ $2^{-1}\left[\frac{3S+1}{(c_{S}-1)(S^{2}+1)}\right] = 2e^{t} - 2\cos t + \sin t$ $d^{-1} \begin{bmatrix} 3(3+1) \overline{6}^{3} S_{1} \\ (S_{1})(S_{1}^{2}+1) \end{bmatrix} = \begin{bmatrix} 2e^{t-3} - 2co(t-3) + Sin(t-3) \end{bmatrix} a(t-3)$

Inverse transform of dogar inmic functions and inverge functions Given $\overline{p}(S)$ we need to find $L^{-1}[\overline{f}(S)] = f(t)$ we have the property $J[f(t)] = -\overline{f}'(S)$ equivalently, $d^{-1}[-\bar{F}'(S)] = t f(t)$ * Find the inverye Laplan transform of the following Functions: 10 20g [<u>s+a</u>] (uog (m/n) = 109m-109n $Solo (et \tilde{f}(s) = log (s+q)$ $\vec{f}(S) = dOg(S+q) - log(S+b) \ log(mn) =$ $\vec{f}(S) = \frac{1}{0 \cdot \omega \cdot \alpha' \cdot to \ 8} \ \frac{1}{log(m+d)} \ \vec{f}(S) = \frac{1}{S+a} - \frac{1}{S+b} \ \frac{1}{14} \ \frac{1}{B \cdot S} \ \frac{5}{by} - \frac{1}{1} \ -\vec{f}(S) = -\frac{1}{S+a} \ \frac{1}{S+b} \ \frac{1}{S+a} \ \frac{1}{S+b} \ \frac{1}$ Jug m + 2097 $-\frac{1}{f}(s) = \frac{1}{s+b} - \frac{1}{s+a}$ $d^{-1}[-\bar{f}'(s)] = d^{-1}[\frac{1}{s+b} - \frac{1}{s+a}]$ $\sharp flt) = d^{-1} \left[\frac{1}{3+b} \right] - d^{-1} \left[\frac{1}{3+0} \right]$ $\sharp f(t) = \overline{e}^{bt} - \overline{e}^{at}$ $f(t) = \overline{e}^{bt} - \overline{e}^{at}$

@ cot' (%a) det Ē(S)= Cot⁻¹(\$/a) 0. 10. 17+08 $f'(s) = \frac{-1}{1+(g_a)^2} \times \frac{d}{ds}(g_a)$ $= \frac{-1}{1+\frac{1}{s_{1}^{2}}} \times \frac{1}{q}$ - 3ex -1 = (2) 7 $= \frac{-1}{\alpha^2 + s^2} \times \frac{1}{\alpha}$ 8 MX $= \frac{-1\alpha^2}{\alpha^2 + s^2} \times \frac{1}{\sqrt{\alpha}}$ (2) F. $\overline{f}'(S) = -\frac{q}{q^2 + S^2}$ x14 B.S by -1 $-\bar{f}'(s) = \frac{a}{a^2 + s^2} = -\bar{f}'(s) = \frac{a}{s^2 + a^2}$ $d^{-1}\left[-\bar{f}'(s)\right] = d^{-1}\left[\frac{\alpha}{\delta^{2}+\alpha^{2}}\right]$ (col (519) tfl+) = Sinat : C 192 $f(t) = \frac{sinat}{t}$ 3 $\log \left[\frac{s^2 + 4}{s(s+4)(s-4)} \right]$ $\underline{Soin'} \quad let \quad \overline{f}(S) = \log \left[\frac{s'+4}{s(s+4)(s-4)} \right]$ 0-0 - (0+2)*

F(S) = [uog(S²+u)] - [uog[S(S+u)(S-u)] ung mnp = ungm+10gn+logp = uog(s2+4) - Suogs+uog(s+4) +uog(s-4)? $\overline{F}(S) = uog (S^{2}+4) - uog S - uog (S+4) - uog (S-4)$ $\overline{F}(S) = \frac{1}{S^{2}+4} = \frac{1}{S} (S^{2}+4) - \frac{1}{S} - \frac{1}{S+4} = \frac{1}{S-4}$ $\bar{f}(S) = \frac{1}{s^2 + y} \times \partial S = \frac{1}{S} - \frac{1}{S + y} - \frac{1}{S - y}$ x14 B.S by -1 $-f(s) = -\frac{2s}{c^2+4} + \frac{1}{s} + \frac{1}{s+4} + \frac{1}{s-4}$ $\mathcal{L}^{-1}\left[-\bar{F}'(S)\right] = -\mathcal{Q}\mathcal{L}^{-1}\left[\frac{S}{S^{2}+4}\right] + \mathcal{L}^{-1}\left[\frac{1}{S}\right] + \mathcal{L}^{-1}\left[\frac{1}{S^{2}+4}\right] + \mathcal{L}^{-1}\left[\frac{1}{S^{$ 2-15-5 $t f lt) = -2 co_{,82} t + 1 + c^{-ut} - e^{-ut}$ $f(t) = 1 + \overline{e}^{ut} - \frac{ut}{e} - \frac{\partial \cos 2t}{\partial t}$ $O Cot^{-1}\left(\frac{S+q}{b}\right)$ Soi?' det $\overline{F}(S) = \cot^{-1}\left(\frac{S+q}{B}\right)$ $\overline{F}'(C) = 1$ $f'(s) = \frac{-1}{1 + \left(\frac{s+q}{b}\right)^2} \times \frac{d}{ds} \left(\frac{s+q}{b}\right)$ $\overline{f}'(S) = \frac{-1}{1+(S+q)^2} \times \begin{bmatrix} b(1+\sigma) - (S+\alpha)(\sigma) \\ b^2 \end{bmatrix}$ $= \frac{-b^2}{b^2 + (S+\alpha)^2} \left[\frac{b-0}{b^2} \right]$

and the month of the one on $f'(s) = \frac{-b}{(s+q)^2 + b^2}$ $x^{14} = B \cdot S = by - \frac{b}{cs + as^{*} + b^{*}}$ 13 Jue datur da ta $d^{-1}\left[-\frac{1}{2}(s)\right] = d^{-1}\left[\frac{b}{(s+a)^2 + b^2}\right]$ $\sharp f(H) = e^{-\alpha t} d^{-1} \left[\frac{b}{s^2 + b^2} \right]$ the say that co $f(t) = e^{-at} sin bt when the single sin bt when the single si$ Conveilation Theorem $\frac{1}{2}$ = $\frac{1}{2}$ = $\frac{1}{2}$ = $\frac{1}{2}$ = $\frac{1}{2}$ (+18-[(s)]-8(+) ĥ then f. [Ecore 2 (co)] = [time (t-n) qu ampletation of the first of and form by The given franction og enpressed g coorking proceedure Dacquet of the function say files & gres (3) B= [(5) 2], 1 3 (H) 3 = [(5) 2], -1 [2(5)] = 8(1) De cos appires convolution incoren in one of 4-1[\$(9) \$(9)]= [\$(4)81(-4) du Loe evoluate the convolution integral (0)

Convolution theorem Definition! The Convolution of two functions fles & gles usually dunoted by fles * gles is defined in the form of an integral of follows $F(t+) \neq g(t+) = \int_{0}^{t} f(u)g(t-u) du$ Property O: +1+)*g(t) = g(t) * f(t) is exust. ic to say that convolution operation * 19 commutative Convolution Theorem:-Statement: If d-1[\$(s)]=f(t) and 2-1[g(s)]=g(t) then $d^{-1}[\overline{F}(S), \overline{g}(S)] = \int_{-1}^{1} f(u)g(t-u) du$ Computation of the inverge trany form by wing Convolution' theorem O The given Function in expressed of working procedure! product of two functiony say F(s) & g(s) we find J⁻¹[₹(S)] = \$(t) & J⁻¹[§(S)] = g(t)
 I we apply convolution theorem in one of $\mathcal{L}^{-1}\left[\overline{f(s)},\overline{f(s)}\right] = \int_{-1}^{t} f(u)g(t-u) du$ the form. @ we evaluate the "convolution integral to obtain the required inverse.

using convolution theorem obtain the inverge taplace transform of the following Function 8. Jan 2018 S(S2 + a2) Soin: det $\overline{F}(S) = \frac{1}{5} = \frac{1}{5} = \frac{1}{5^2 + a^2}$ $J^{-1}[\bar{F}(S)] = J^{-1}[Y_S] = 1 \text{ and } J^{-1}[\bar{g}(S)] = L^{-1}[\frac{1}{S+d}]$ Tailing inverse g(t) = 1/2 Sinat ·. flt)=1 we have convolution theorem $f^{-1}[\bar{f}(s),\bar{g}(s)] = \int_{-1}^{1} f(u)g(t-u) du$ ŝ $J^{-1}\left[\frac{1}{S(S^2+a^2)}\right] = \int t \cdot \frac{ginalt - u}{a} du$ $= \int_{u=0}^{t} \frac{\sin(at-au)}{a} du$ 900 $= \frac{1}{4} \int_{u=0}^{t} \sin(at - au)$ $= \frac{1}{2} \left[\frac{1}{2} \frac{1}{2}$ $= \begin{bmatrix} \cos\beta(\alpha t - \alpha u) \end{bmatrix}_{x = 0}$ $= \chi \left(\cos \left(\operatorname{at} - \operatorname{at} \right) - \cos \left(\operatorname{at} \right) \right)$ $= \chi \left(\cos \left(\operatorname{at} - \operatorname{at} \right) - \cos \left(\operatorname{o} \right) \right)$ = Ya2 (COB (0) - coBat)

$$= \sum_{k=1}^{n} (1 - \cos at)$$

$$= \sum_{k=1}^{n} (1 -$$

pone (32+a2)2+1 (1000) $Soin: (# F(S) = \frac{1}{S^2 + a^2} = g(S) = \frac{1}{S^2 + a^2}$ $d^{-1} \left[\bar{F}(S) \right] = d^{-1} \left[\frac{1}{S^2 + a^2} \right] = \delta d^{-1} \left[\frac{1}{S^2 + a^2} \right] = \delta d^{-1} \left[\frac{1}{S^2 + a^2} \right]$ f(t) = sinat, g(t) = sinatwe have convertion theorem $\int_{a}^{a} \left[\frac{F(s)}{F(s)} \frac{F(s)}{F(s)} \right] = \int_{a}^{b} \frac{F(u)}{F(u)} \frac{g(t-u)}{du} du$ $\frac{d}{d} \left[\frac{1}{(g^2 + a^2)} \frac{1}{(g^2 + a^2)} \right] = \int \frac{d}{a} \frac{d}{a} \frac{d}{a} \frac{d}{du} \frac{d}{du}$ $d^{-1}\left[\frac{1}{(S^{2}+a^{2})^{2}}\right] = \int_{a}^{t} \frac{sinau}{a} \times \frac{sin(at-au)}{a} du$ = 1/2 (Sinau Sin (at-au) du $\omega \cdot \kappa \cdot \tau = 2 \sin A \sin B = \cos (A + B) - \cos (A - B)$ $SinAsinB = -\frac{1}{2} \left[\cos(A+B) - \cos(A-B) \right]$ $= \frac{1}{\sqrt{2}} \int \frac{-\frac{1}{\sqrt{2}} \left[\frac{\cos(\alpha u + \alpha t - \alpha u)}{\cos(\alpha u - (\alpha t - \alpha u))} \right] du}{\cos(\alpha u - (\alpha t - \alpha u))} du$ 4=0

 $= - \chi_{a^2} \int (\cos at - \cos (2au - at)) du$ $= -\frac{1}{2a^2} \left[\int_{u=0}^{t} \cos \alpha t \, du - \int_{u=0}^{t} \cos(2\alpha u - \alpha t) \, du \right]$ 6 $= -\frac{1}{2a^2} \left[\cos \alpha t \int 1 \, du - \left[\frac{\sin (2\alpha u - \alpha t)}{2a} \right] \right]$ $= -\frac{1}{2a^2} \cos \left(u \int_{u=0}^{t} -\left[\frac{\sin (2at-at)}{2a} - \frac{\sin (0-at)}{2a} \right]$ $= -\frac{1}{2a^2} \left[\cos \left[t - 0 \right] - \left[\frac{\sin at}{2a} - \frac{\sin (-at)}{2a} \right] \right]$ $= -\frac{1}{2a^2} \left[\frac{t \cos 2a}{2a} - \frac{3inat}{2a} - x - \frac{3inat}{2a} \right]$ 4 $= -\frac{1}{2a^2} \left[t \cos 8at - \frac{\sin at}{2a} - \frac{\sin at}{2a} \right]$ $=\frac{1}{2a^{2}}-t\cos(3at)+\frac{\sin(at)}{2a}+\frac{\sin(at)}{2a}$ = 2/202 - tcosat + Asinat $d^{-1}\left[\frac{1}{(3^{2}+a^{2})}\right] = \frac{1}{3}a^{2}\left[-t\cos(3at + 3inat)\right]$

0017 (S-1) (S2 +1 $ler \bar{F}(S) = \frac{1}{(S-1)} = \frac{1}{S} \bar{g}(S) = \frac{1}{(S+1)}$ $J^{-1}[\bar{f}(s)] = J^{-1}[J_{s-1}] = e^{-1}$ $f(t) = e^t$ $J^{-1}[g(s)] = J^{-1}[\chi_{s+1}] = sint$ · g(t)=Sint Convolution theorem Now we $d^{-1}\left[\overline{f}(s)\overline{g}(s)\right] = \int \overline{f}(u)g(t-u)du$ $\begin{bmatrix} 1\\ (S-1)(S^2+1) \end{bmatrix} = \int_{0}^{t} e^{tt} - Sin(t-u) du$ $\omega \cdot K \cdot T \left(e^{a\chi} \sin (b\chi + c) d\chi = \frac{e^{a\chi}}{a^2 + b^2} \begin{bmatrix} a \sin (b\chi + c) d\chi \\ -b d\chi \end{bmatrix} \right)$ $\psi^{-1}\left[\frac{1}{(s-1)(s^2+1)}\right] = \left[\frac{e^{u}}{1+1}\left(e^{u}sin(t-u) - e^{u}cos(t-u)\right)\right]$ $= \left[\frac{e^{u}}{2} \left(sin (t-u) + co_{,8} (t-u) \right) \right]^{t}$ $= \left[\begin{cases} e^{t} (\sin (t-t) + \cos (t-t)) - \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{cases} \left(\begin{cases} e^{o} (\sin (t-o) + \cos (t-o)) - \frac{1}{2} \\ \frac{1}{2} \end{cases} \right) \right]$ ubo(wo_ $= \begin{cases} e_{10}^{t} (\sin(0) + \cos(0)) - \frac{1}{2} (\sinh(0) + \cos(0)) \\ = e_{10}^{t} (0 + 1) - \frac{1}{2} (\sinh(0) + \cos(0)) \\ = e_{10}^{t} (0 + 1) - \frac{1}{2} (\sinh(0) + \cos(0)) \end{cases}$

= yet - ysint - ycost = 1/2 (et - sint - cost) Doyourfelf using convolution theorem $\overline{(s+1)(s^2+1)}$ S (s2+a2)2 Let $\overline{F(S)} = \frac{S}{S^2 + a^2}$ and $\overline{g(S)} = \frac{S}{S^2 + a^2}$ Sono J'[F(S)] = cosat and d'[g(S)] = Gonat flt)=cosat and glt)= cosat w by applying convolution theorem we $d^{-1}\left[\frac{s^2}{(s^2+a^2)^2}\right] = \int f(u)g(t-u)du$ = $\int cosau cosa(t-u)du$ = j^t cosau coscat-ausdu $\cos A \cos B = \frac{1}{2} \left[\cos (A + B) + \cos (A - B) \right]$ = /2 f 2 co & (out at - ate) + co & (at - (at - au)) du

=>> (Cosat + cos (ati-at+au)) du =>{(cosat + cos(eau - at)) du = $\frac{1}{2}\int_{u=0}^{t} \cos(2\alpha u - \alpha t) du$ u=0= 1/3 { cosat \$ 1. du + \$ cos (2 au-at) du } = 1/3 { cogat [u]u=0 + x[+ sinc2au-at)]t 20 = } { Cosat (t-0)+ - {Sin(2at-at) - at)} { Sin(2a(0)-at)} { Sin(2a(0)-at)} { = 1/2 Scogat t + 1/20 (sin(sat) - Sin(o-at) = 1/2 St cosat + 1/20 (sinat - sin(-at)) = 1/3 Stoosat + 1/2 Sinat + Sinat) Sin = 1/2 { t cosat + 1/2 (\$sinat) } = 1/2 f + cosat + 1/2 Sinat } $\frac{s^2}{(s^2+a^2)^2} = \frac{1}{2a} \left\{ \frac{at\cos at + \sin at}{at\cos at + \sin at} \right\}$ at-au))du

Do yourget (cup + 10 - 10) 800 + 10 100 5°(0+1)2 _Bino Let F(S)= 1/2 g(S)= /S+1)2 $J'[\bar{F}(S)] = J'[Y_S]$ and $J'[\bar{g}(S)] = Y_{(S+1)}^{*}$ f(t) = t and $g(t) = \bar{e}^{t} t$ Now by applying Bonvolution theorem $\frac{1}{\left[\frac{1}{s^{2}(s+t)^{2}}\right]} = \int_{0}^{t} \frac{1}{f(u)} g(t-u) du$ $= \begin{bmatrix} u \\ e \end{bmatrix} \begin{bmatrix} t \\ - (t-u) \\ t+-u \end{bmatrix} du$ in(satiot) $\begin{bmatrix} t & t & t \\ t & t$ $= \int_{a=0}^{a=0} u \cdot \overline{e}^{t} \cdot e^{u} (t-u) du$ $= \tilde{e}^{t} \int (t u - u^{2}) e^{t} du$ Apply Bernoulli's rule $J^{-1}\left[\frac{1}{s^{2}(s+1)^{2}}\right] = e^{t}\left[\frac{tu-u^{2}}{t}\right]e^{u} - (t-2u)e^{u} + (0-2)e^{u} = 0$ $= \bar{e}^{t} \left[(\frac{1}{2}, t - t^{2}) e^{t} - (t - 2t) e^{t} + (t - 2t) e^{t} + (t - 2t) e^{t} \right] - \left\{ (0 - 0) e^{0} - (t - 0) e^{0} \right\}$ stonic + + + (-2) 82 (000)

=et [0 - (-t)et - 2et - 0+t+2] = et [tet - set +t + 2] $= e^{t} t \cdot e^{t} - \vartheta e^{t} \cdot e^{t} + t \cdot e^{t} + 2e^{t}$ $= \chi - \vartheta + e^{t} (\vartheta + t)$ (m) $\frac{1}{1} = \partial \left(e^{-t} - 1 \right) + t \left(1 + e^{-t} \right)$ Solution et lineor differential equations 52(5+1) Veing Laprace transforms (Initial value the degivating problems Laprace transform of devive an esupression for d[y'(t)] and hence we deduce the esupression for d[y"(t)], d[y""(t)] so, d[y'l+)]= sl[y(+)]-y(0) $J[y''(t)] = S^2 J[y(t)] - Sy(0) - y'(0)$ $d[y''(t)] = s^3 d[y(t)] - s^2 y(0) - sy'(0) - y''_{0}$ O The given differential eqn is expressed in the notation y'lt), y"(t), y"(t)... for the Divertaice laprace torany form on both 3 we ye the coupressions for Sidy of grown equation トレインノ,トレインレノ.

@ we Substitute the given initial conditions and simplify to obtain L[y12)] as a function @ we find the inverge to obtain yit Problem & O Solve by wing Laplace transforms $\frac{d^2y}{dt^2} + \frac{k^2y}{t^2} = 0$ given that $\frac{y}{(0)} = \partial_{t} \frac{y'(0)}{(0)} = 0$ <u>Sono</u> The given egn is y"(t) + k²y(t) = 0 Tauing Laplace transform on B.S $d\left[y''(t) + k^{n}y(t)\right] = L[0]$ $\{s^2 \land [g_{lt}] - sy_{l0} - g'_{l0}\} + \kappa^2 d[g_{lt}] = 0$ Toppang kaplace Using the given initial conditions we obtain $(((s^2 + \kappa^2) \lambda [yt)) - sy(0) - y'(0) = 0$ $(s^{2}+\kappa^{2})\lambda[y(t)]-S(a)-0=0$ $(8^{2} + \kappa^{2}) \lambda [Y(t)] - 2S = 0$ $\partial [y(t)] = \partial S \\ S^2 + k^2 = 1$ $\mathscr{E}\left[\mathcal{Y}(t)\right] = \partial d^{-1}\left[\mathcal{S}_{\mathcal{F}}^{*}\right]$ $\omega \cdot \mu \cdot \tau \quad d^{-1} \begin{bmatrix} s \\ s^2 + a^2 \end{bmatrix} = cos at$ any fain an both : y(+) = 2008Kt

Ceri Soive y" + 2y" - y' - 2y=0 given ylo) = y'(0) =0 and y"(0)=6 by cying Laplace transform method. Soino y" + 2y"-y'-2y=0 - 1 ylo) = y'lo) = 0 & g"lo) = 6 liven Taking daplace transform on B.S. of O initial condition 2[y"(+)]+22[y"(+)]-2[y'(+)]-22[y1+]=10] { 3 + [y(t)] - s² y(0) - sy'(0) - y"(0) } + 2{S2[Y(+)]-SY(0)-Y'(0)}-{82[Y(+)]-Y(0)} -22[y [t)]=0 $L[Y(H)]{s^3 + 2s^2 - s - 2} - s^2y(0) - sy'(0) - y'(0)$ -25y10) -2y'(0) +y(0)=0 $d[y(t)]\{s^{2}(s+2)-1(s+2)\}-s^{2}(0)-s(0)-6-2(0)$ -2(0)+0=0 2[y(t)] {(s+2)(s+1)} -0-0-6-0-0=0 2[y(t)] {(S+2)(32-1)2-6=0 at b= (a+b)(a-b) $d[y(t)] \{ (s+d)(s+n(s-1)) \} = 6$ 2[y(+)] = (s+2)(s-1)(s+1) $y(t) = d^{-1} \frac{6}{(s+2)(s-1)(s+1)}$ By paytial fractions we have to solve $\frac{A}{s+2} + \frac{B}{s-1} + \frac{C}{c+1}$ (S+2) (S-1)(S+1)

x4 BS by (9+2)(S-1)(S+1) 6 = A(S-1)(S+1) + B(S+2)(S+1)+C(S+2)(S-1) put \$=2 6 = A(-3)E(3)+B(0)+C(0)6 = 3A? 0 + 0 (0) + 0 put 8=1 [and]- [and] 6= A(0) + B(3)(2) + c(0) 6=0+6B+0=>6B=6=>B=1 -[(118]12330 put S=-1 put S = -1 6 = A(-2)(0) + B(0) + C(1)(-2) (1) = (1) + (1)6=0+0-2083-26-2-28+228(4)8]+ -20=6=> <u>C=-3(0)</u> Kt (0) Ke - (0) Kse- $\begin{array}{c} P_{ut} \quad A, B, c \quad \text{in } \textcircled{O} \\ \underline{6} \\ \hline \\ (S+2)(S-1)(S+1) = \frac{2}{S+2} + \frac{1}{S-1} + \frac{-3}{S+1} \\ d^{-1} \left[\frac{6}{(S+2)(S-1)(S+1)} \right] = \frac{2}{3} d^{-1} \left[\frac{1}{S+2} \right] + d^{-1} \left[\frac{1}{S-1} \right] - 3 \lambda^{-1} \left[\frac{1}{S+1} \right] \\ \end{array}$

3 solve the following initial value Droblem by wing Laplace transform d'y + 4 dy + 4 y = et, y(0) = 0, y'(0) = 0 dt' dt June Droblem 8016 Given $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 4y = e^{t}$ Soloo y(0)=0, y'(0)=0 y"(t) + 4y'(t) + 4y (t) = 0"t Toucing Laplace transform on both Sideg $d \left[y''(t) \right] + 4 d \left[y'(t) \right] + 4 d \left[y'(t) \right] = d \left[\overline{e}^{t} \right]$ {s² + [y(+)] - Sy(0) - y'(0) } + + {SL [y[+)] - y[0] Using the given initial conditions are obtain d[y(t)]{s2+HS+H} - 8y(0) - y'(0) - Hy(0) d[y 1t)]{St + 4St + 2 - S(0) - 0 - H(0) = 1 St1 d[ylt)]{s+4s+4}-0-0-0=/s+1 +[y(t)] {(S+2)2} = /5+1 $d[y(t)] = \frac{1}{(s+1)(s+2)^2}$ $y(t) = d^{-1} \left[\frac{1}{(S+1)(S+2)^2} \right] \longrightarrow$ $\frac{1}{(S+1)(S+2)^{2}} = \frac{A}{S+1} + \frac{B}{(S+2)} + \frac{C}{(S+2)^{2}} - 0$ $\times^{14} \quad B \cdot S \quad by \quad (S+1)(S+2)^{2}$ $I = A(s+2)^{2} + B(s+1)(s+2) + C(s+1) - C(s+1)$

and S=-1 1= A(-1+2) + B(0) + C(0) ASI'S GIVEN A ALLAN WELLAND SUP SUP SUP SUP 1. (0) B '8 . (0) B 207036 [any]+6+[au's]+6+[au's] 520+0= (0) RS [- 2 4 10) R + 6 (0) R + 6 / 2 4 [3 (- 2 - 3 - 3 - 2) 10) equating the co-efficient of son B.S $I = A(S^{2}+u+uS)+$ B(S²+3S+2)+(CS+1) O=A+B W.K.T A=1 IN (HS there is no s² so co-eff of st is zero B=-1 O=A+B A=1 hence d = (1+26) - f(6+2)rc+2 f(0)rfb O = 5 = 2 = (1-26) - 1 - (5+2)rc+2 f(0)rfb $(S+1)(S+2)^2 = S+1 = -\frac{1}{S+2}$ $d^{-1}\left[\frac{1}{(s+1)(s+2)^{2}}\right] = d^{-1}\left[\frac{1}{s+1}\right] - d^{-1}\left[\frac{1}{s+2}\right] - d^{-1}\left[\frac{1}{(s+2)^{2}}\right]$ $= \bar{e}^{t} - \bar{e}^{2t} - \bar{e}^{2t} d^{-1} [\chi_{2}] (::a=-2)$ $= \bar{e}^{t} - \bar{e}^{2t} - \bar{e}^{2t} d^{-1} [\chi_{2}] (::a=-2)$

Employ laplace transform to Bolos ;; equation y"+5y'+6y=5e², y(0)= 2, y(0) 0 Boing Given y"(\$)+59'130 +69(\$) =5e²x (1)y(0)=2, y'(0)= Taking Laplace transform on both side of O $d[y''(x)] + 5d[y'(x)] + 6d[y(x)] = 5d[e^{2x}]$ {st[y(x)] - sy(0) - y'(0)} + 5{st[y(x)] - y(0)} $+ 6d[xy(x)] = \frac{5}{8-2}$ 2[y(x)] {s2+55+6} - sy(0) - y(0) - 5y(0) Use the initial condition $\mathscr{L}[y(x)] \leq S^2 + 5S + 6 \leq -S(2) - 1 - 5(2) = \frac{5}{S-2}$ $d[y(x)] \{ s + 5s + 6\} - 2s - 11 = \frac{5}{s - 2}$ $d[y(x)] \{ (S+2)(S+3) \} - (\Im S+11) = \frac{5}{S-2}$ $d[y(x)] \{(s+2)(s+3)\} = \frac{5}{s-2} + (as+11)$ $J[y(x)]{(S+2)(S+3)} = 5+(2S+11)(S-2)$ 5-2 5+25+115-45-22 $\alpha[y(x)] =$ (s+2)(s+3)(s-2)2[y(x)] = 252+75-17 $(S_{1})(S+2)(S+3)$ $y(x) = l^{-1} \int \frac{2s^2 + \frac{1}{5} - \frac{1}{5}}{(s-2)(s+2)(s+3)}$

Employ caplace tranyform to Solve the 20 equation y"+5y'+6y=50, ylos= 2, y'o Boing Given y''(x) + 59'(30 + 6 y (30) ± 5 e²x Taking Laplace transform on both side of O $d[y''(x)] + 5d[y'(x)] + 6d[y(x)] = 5d[e^{2x}]$ {s²+[y(x)] - sy(0) - y'(0)} + 5{s+[y(x)]-y(0) $+ 6d[xy(x)] = \frac{5}{8-2}$ $d[y(x)] \{ s^2 + 5s + 6 \} - sy(0) - y'(0) - 5y(0) \}$ - 2/ Use the initial Condition $\alpha [\gamma(x)] \{ s^2 + 5s + 6\} - \delta(a) - 1 - 5(a) = \frac{5}{s}$ $\mathcal{L}[y(x)] \left\{ \frac{s^2 + 5s + 6l}{s} - 2s - 11 = \frac{5}{s - 2} \right\}$ $d[y(x)] \{ (s+2)(s+3) \} - (\vartheta s+11) = \frac{5}{s-2}$ $J[y(x)]\{(S+2)(S+3)\} = \frac{5}{S-2} + (aS+11)$ $\mathcal{L}[y(\alpha)]\{(S+2)(S+3)\} = 5+(\otimes S+11)(S-2)$ $d[y(x)] = 5+2s^2+11s-4s-22$ (S+2)(S+3)(S-2)2[y(x)]= 25+75-17 (S+2)(S+2)(S+3) $\mathcal{Y}(x) = \mathcal{L}^{-1} \left[\frac{2S^2 + \frac{1}{5}S - \frac{1}{7}}{(S-2)(S+2)(S+3)} \right] \longrightarrow \mathcal{B}$ E

 $\frac{(s-2)(S+2)(S+3)}{(s-2)(S+3)} = \frac{A}{S-2} + \frac{B}{S+2} + \frac{C}{S+3} - 0$ 2 × 14 BS by (S-2)(S+2)(S+3) 25"+75-17 = A(S+2)(S+3)+B(S-2)(S+3) + C(S-2)(S+2)(x) becomes put S=2 SEC $2(2)^{2} + F(2) - 1F = A(4)(5) + B(0) + C(0)$ 8+14-17=20A+0+0 OBIDS CONDECC 5=20A => A=14 S(0) = 0, 3 Pat S=-2 $2(-2)^{2}+7(-2)-17 = A(0)+B(-2-2)(-2+3)$ faille dépirée transform (0) 2745 2(4)-14-17 = 0+B(-4)(1)+0+23=+413 - (0)x - (0)x2-(4)x715? B=23/4 X=[(+1)c] b+ put S=-3 (0)22 $2(-3)^{2} + 7(-3) - 17 = A(0) + B(0) + C(-3-2)(-3+2)$ 2(9) - 21 - 17 = 0 + 0 + c(-5)(-1)18-21-17 = 5C -20=5C=>C= -20 5- 1+25-27[(1)c] C=-4 2[x(1)] [5-25+1] +1 = のシ $\frac{2S^{2}++S^{-1}+2}{(S-2)(S+2)(S+3)} + \frac{1}{4(S-2)} + \frac{23}{4(S+2)} + \frac{-4}{(S+3)}$

 $2^{-1}\left[\frac{2S^{2}+7S-17}{(S-2)(S+2)(S+3)}\right] = \frac{4}{4}z^{-1}\left[\frac{1}{S-2}\right] + \frac{23}{4}z^{-1}\left[\frac{1}{S+1}\right]^{2}$ (\$12)(S+2)(-4+ - 5+3) 18 $I - \begin{bmatrix} 25^{2} + 35 - 137 \\ 65 - 2)(59 - 289) \end{bmatrix} = \frac{1}{4} e^{2\pi} + \frac{23}{4} e^{-2\pi} - 4e^{-3\pi}$ (R) becomes the section of the $y(x) = \frac{1}{4}e^{2\pi} + \frac{23}{4}e^{-2\pi} - 4e^{-3\pi}$ 5 Using laplace transform technique June Solve $x'' - 2x' + x = e^{2t}$ with $2017 \quad x(0) = 0, \quad x'(0) = -1$ \underline{Sol}^{n} Given $\chi'' - 2\chi' + \chi = e^{2t}$ $x''(t) - 2x'(t) + x(t) = e^{2t}$ taice dapiace transform on B S $d[x''(t)] - dd[x'(t)] + d[x(t)] = d[e^{2t}]$ {s2[x(t)]-sx(0) - x'(0)} - 2 {sd[x(t)]-x(0)} + d[o(1+)] = 1/c-2 $d[x(t)]{s^2 - 2s + 12 - sx(0) - x'(0) - 2x(0)}$ 2(-3) 17(-3)-17 = A(0)7, B/ $\frac{1}{5} \frac{1}{5} \frac{1}$ d[x1+)]{s-2s+12-0+1-0=1/c-2 $J[x(t)]{S^2-2S+1}+1=\frac{1}{S-2}$ $2[\pi(t)] \{s^2 - 2s + i\} = \frac{1}{s-2} - 1$

0+1)][s=2s+1]= 1-s+2 s-2 $J[x H] = \frac{3-5}{(s-2)(s^2-2s+1)}$ $d[\pi(H)] = \frac{3-5}{(5-2)(5-1)^2}$ $\int x(t) = L^{-1} \left[\frac{3-S}{(S-2)(S-1)^2} \right]$ $\frac{B}{(S-2)(S-1)^2} = \frac{A}{S-2} + \frac{B}{S-1}$ 3-S=A(S-1)2+B(S-1)(S-2)+C(S (2-1)2+B(0)+C(0) put 8=2 3-2=A 1= A(1) + 0 + 0 => A=1/ 3-1= A(0)+B(0)+C(-1) y qob equating the Co-efficient of gron boths These is no stin D=A+B = A+0 W.K.T A=1 0=1+B=>B=-] put A, B, C values in D $\frac{3-S}{(S-2)(S-1)^2} = \frac{1}{S-2} - \frac{1}{S-1} - \frac{2}{(S-1)^2}$ $a^{2} = b^{-1} \left[\frac{1}{s-2} \right] - b^{-1} \left[\frac{1}{s-1} \right] - b^{2} b^{2}$ 2)(5-1

 $= e^{2t} - e^t - 2e^t d^{-1} \left[\frac{1}{S^2} \right]$ = e2t - et - 2et E (1) x (1) $J - \frac{3-5}{6-1069} = e^{2t} - e^{t} (1+ \delta t)$ $\gg x(t) = e^{2t} - e^t(1+2t)$ June & Solve by cying Laplace transform d 2015 & Solve by cying Laplace transform d' $\frac{d^{2y}}{\partial t^{2}} + \frac{\partial}{\partial t} \frac{dy}{dt} + y = t e^{t} with y(0) = 1, y'(0) = -2$ (F) Solve y" + 6y' + qy = 12t²e^{-3t} Subject to DeC the conditions y10)=0=y'(0) by ying the Laplace transforms. $\frac{201^{n}}{y''(t)}$ the given equation is $y''(t) + 6y'(t) + 9y(t) = 12te^{-3t}$ Talle Laplace transform on B.S $d[y''(t)] + 6d[y'(t)] + 9\lambda[y(t)] = 12\lambda[t^2-3t]$ {s² d[y(t)] - sy(0) - y'(0) }+6{s h[y(t)] - y(0)} $+q + [y(t)] = 12: d[t^2]_{s \to s+3}$ d[y(t)] $S^{2} + 6S + 92 - SY(0) - Y'(0) - 6Y(0) + [t^{n}] = n!$ $= 12 \left[\frac{8}{8^3} \right] s \rightarrow s + 3$ $2\left[y(t)\right]\left\{s^{2}+6s+9\right\}-0-0-0=\frac{24}{(s+3)^{3}}$ $J[Y(t)] \{ (s+3)^2 \} = \frac{24}{(s+3)^3}$

 $\lambda [y(t)] = \frac{d4}{(S+3)^3(S+3)^2}$ $d[y(t)] = \frac{24}{(s+3)^5}$ Pres $y(t) = L^{-1} \left[\frac{24}{(s+3)^5} \right]$ = 24 d⁻¹ [1] $\lambda^{-1}\left[\frac{1}{S^{n+1}}\right] = t^{2}$ $= 24 e^{3t} d^{-1} \left[\frac{1}{55} \right]$ d-1[1/5]=1-1]-1 = 24e^{-3t} t⁴ 二十二 (-:n=4) a = 214. e 3t + 4 24 $[y(t) = e^{3t}, t^{4}]$ Solve the following boundary value problem wing daplace transforms y''(t) + y(t) = 0; y(0) = 2, y(T/2) = 1race capiace transform on both sides Soin: y"(t) + y (t) = 0 もしょ"した)」+トしょしり」=ト[の] $\{s^2 \neq [y(t)] - sy(0) - y'(0)\} + \lambda [y(t)] = 0 - 0$ Let y assume y'(0)=a, where a y a conytont to be found later & we have ylo) = 2 by data honce eqn @ becomes

(02+1) 2 [y(t)]-28-a=0 $(S^2 + 1) \neq [y(t)] = 2S + \alpha$ $J\left[y(t)\right] = \frac{2S+q}{S^2+1}$ $J\left[y(t)\right] = \frac{2S+q}{S^2+1}$ $y(t) = t^{-1} \left[\frac{2s+q}{s^{2}+1} \right]$ $= \mathcal{L}^{-1} \left[\frac{2S}{S^2 + i} \right] + \mathcal{J}^{-1} \left[\frac{a}{S^2 + i} \right]$ $= \partial l' \left[\frac{s}{s^2 + 1} \right] + \alpha L' \left[\frac{1}{s^2 + 1} \right]$ ylt) = 2 cosat tasint - (*) Now we shall use the condition y(T/2)=1 $y(T_{2}) = 2\cos T_{2} + a \sin T_{2}$ 1 = & (0) + a (1) = (1) + (1) + (1)Source tobrade transfer in 12 to 50 50 minung a=1+= E(+)&]++E(+)"&]+ ()) y(t) = 2 cost + sint (()) anned with CamScanne

yourself.

Solve the DE y"+49'+3y=et with ylo)=1=y'(0) wing laplace transforms. dy''_{s} $y(t) = \frac{1}{4}e^{t} + \frac{1}{2}e^{t} + \frac{1}{2}e^{-3t}$ by partial fractions we have to solve Bin: Given y"+4y'+3y=e $y''(t) + 4y'(t) + 3y(t) = e^{t}$ raiging laplace transform on both sides $d[y''(t)] + 4 \lambda[y'(t)] + 3 L[y(t)] = L[e^t]$ Ss2+[y(+)] - Sy(0) - y'(0) } + 4 SSL[y(+)] - y(0) $\frac{1}{43} + \frac{1}{3} + \frac{1$ $= \frac{T}{S+1}$ 109 61=861D Use initial conditions d[y1t)]{s2+Hs+3} - S(1)-(1)-H(1)=1/s+ $d[y(t)]{s^2+3s+s+3}-s-5=\frac{1}{s+1}$ $d[y(t)] \{ (s+3)(s+1) \} - (s+5) = \frac{1}{(s+1)}$ $d[y(t)] \{(s+3)(s+1)\} = \frac{1}{(s+3)} + \frac{1}{(s+3)}$ $d[y[t]] \{ (s+3)(s+1) \} = \frac{1 + (s+s)(s+1)}{(s+1)}$ $d[y(t)] \{ (S+3)(S+1) \} = 1 + S^2 + S + 5S + 5$ (S+1) = 1 + (S+1)& [y(+)] { (s+3) (s+1) }= BF65+6

 $x[y(t)] = \frac{s^2 + 6s + 6}{(s+1)(s+1)(s+3)}$ $J[y(t)] = S^2 + 6S + 6$ (s+1)²(s+3) $y(t) = L^{-1} \left[\frac{s^2 + 6s + 6}{(s+1)^2(s+3)} \right] \xrightarrow{(s+1)^2}$ by paytial fractions we have to folloe $\frac{S^{2}+6S+6}{(S+1)^{2}(S+3)} = \frac{A}{S+1} + \frac{B}{(S+1)^{2}} + \frac{C}{S+3}$ x14 B.S. by (S+1)2(S+3) $S^{2}+6S+6 = A(S+1)(S+3)+B(S+3)+C(S+1)^{2}$ $(-1)^2 - (6 + 6)^2 = (-1)^2 + B(-1+3) + C(0)$ o) hs - fe+ sH+ z f[(1) h]? 1=0+28+0 2B=1=) B=1/2 $(-3)^{*}+6(-3)+6 = A(-3+1)(0)+B(0)+(-3+1)^{2}$ put 8= -3 $q - 18 + 6 = 0 + 0 + c(-2)^2$ 1=3=HC) - {(1+2)(8+3) } [(+)y] 6 equaring the co-efficient of St on B-S of @ $= (A + C)^{2} = \{(1 + 2)(2 + 3)\} = (1 + A) =$ $1 = A - \frac{3}{4} = A = 1 + \frac{3}{4}$ $A = \overline{f}_{4}$ and $A = \overline{f}_{4}$

 $\frac{5^{2}}{(5+1)^{2}}\frac{65+6}{(5+3)} = \frac{7}{4(5+1)} + \frac{1}{2(5+1)^{2}} - \frac{3}{4(5+3)}$. e. a values in O $\frac{1}{2} \left[\frac{s^{*} + 6s + 6}{(s+1)^{2} (s+3)} \right] = \frac{7}{4} \left[\frac{1}{(s+1)} \right] + \frac{1}{2} \left[\frac{1}{(s+1)^{2}} \right] - \frac{3}{4} \left[\frac{1}{s+3} \right]$ = FLET + 1/2 Et 2 [[] - 3/2 E 3t $= \frac{1}{2}e^{t} + \frac{1}{2}e^{t} + \frac{1}{2}e^{-3t}$: Decomes $y_{1+} = \bar{\chi}_{4} \bar{e}^{t} + \frac{1}{2} \bar{e}^{t} t - \frac{3}{4} \bar{e}^{3t}$ June previous O y"(+)+ a y'(t) + y(t) = tet $\lambda \left[y''(t) \right] + \partial \lambda \left[y'(t) \right] + \lambda \left[y(t) \right] = \lambda \left[t e^{t} \right]$ { \$ x [y (+)] - Sy (0) - y' (0) } + & { S x [y (t)] - y (0) } $+\lambda [Y(t)] = \lambda [t] s \rightarrow s + 1$ 2[ylt)]{s²+2s+1}-sylo)-y'(0)-2ylo) $= \int \frac{1}{S^2} \int c \rightarrow S + I$ $d[y(t)]\{(s+1)^{2}j - s(1) - (2) - 2(1) = \frac{1}{(s+1)^{2}}$ $2[y(t)] \{(s+i)^2\} - S = \frac{1}{(s+i)^2}$ $d[y(t)]((g+1)^2) = \frac{1}{(g+1)^2} + S$ $\mathcal{L}\left[\frac{y_{1+}}{y_{1+}}\right](s+1)^{2} = \frac{1+s(s+1)^{2}}{(s+1)^{2}}$ $d\left[\frac{y(t+)}{(s+1)^2} = \frac{1+s(s^2+1+2s)}{(s+1)^2(s+1)^2} = \frac{1+s^3+s+2s^2}{(s+1)^4}$

 $\lambda [Y|H] = \frac{1}{(S+I)^4} + \frac{S}{(S+I)^2}$ $y(t) = L^{-1} \left[\frac{1}{(S+1)^4} \right] + L^{-1} \left[\frac{S}{(S+1)^2} \right]$ $= e^{t} \frac{1}{2} \left[\frac{1}{2} \frac{1}{3} \right] + \frac{1}{2} \left[\frac{(s+1)^{-1}}{(s+1)^{2}} \right]$ $= \overline{c}^{T} \cdot t^{3} + \frac{1}{2} \int \frac{S-1}{S^{2}} \int \frac{S-1}{S^{2}} \int \frac{S}{S^{2}} \int \frac{S}{S^$ = et. t3 + d [] - d []2 $= e^{t} t_{6}^{3} + d^{-1} [Y_{5}] - t_{6}$ $(y_{l+}) = \overline{e}^{t} \cdot t^{3} + 1 - t$ $= e^{t} t_{1}^{3} + (1) - t$ 2 (0) y - 6y (0) - y (0) 3

Lyr of formulas $(a) \frac{d}{dx} (\cos \alpha x) = -\alpha \sin \alpha x$ () d (K) = 0 () d (tamox)=a Secar dx $\underbrace{ \textcircled{O} \quad d \quad (x^{n}) = nx^{n-1} \\ dx } \\ \underbrace{ \textcircled{O} \quad d \quad (e^{2t}) = e^{2t} \\ dx } \\ \underbrace{ \overbrace{O} \quad d \quad (e^{2t}) = e^{2t} \\ dx }$ () d (cotax)=- a cosecur dx $() d ((o Rea x)) \\ d^{\gamma i} = - a co Reca x (o ta) c$ $\bigcirc d(e^{ax}) = ae^{ax}$ () d (10gx) = 1 dr (10gx) = 1 (16) d (Secan) = a Secantaman die $\bigcirc d(/x) = -\frac{1}{2}x^2$ () d (/2) = - 2/3 (8) d (Sinx) = 008x (a) $d(\cos x) = -\sin x$ (f) d (tan x) = -Sin x(a) $d(\cot x) = -\cos x$ (a) d (Secre) = Secretanz (a) d (cosecx) = -cosecx cot xdx $(I) = \frac{d}{dx} (Sinax) = acogox$

SURYA Gold Oura O Kdx = Kx + C $\int x^n dx = 2^{n+1} + C$ 3 $\int \frac{1}{x} dx = dog x + C$ (i) $\int 1 dx = x + c$ $(f) = \int sinx dx = -cogx + c$ $\bigcirc \int \cos x \, dx = \sin x + c$ 1) tanx dx = -log cosx 1+c @ log secx 1+c (10) $\int \cot x d = dog \int \sin x f + c$ [secxdx = dog [secx + tamx] + C D Secxtanz dz = Secx + C (3) 1 cosecoc dx = 109 | cosecx - cotoc | + C (Cosecx cotx dx = -cosecx+C $\int \sin a x \, dx = -\cos a x + C$ (E) To cosar dx = sinax + C (tomax dx = -109 [cosax), C (7)

(P) footax dx = 10g [sinax] + C (cosecaxdx = 10g / cogecax -cotax) to () [secar dx = 109 [secar + tamox) + C (20) (secord x = tan x + C (a) $\int \cos e^{2x} dx = -\cot x + C$ Product rule & oguotiunt rule of Differentiation $() \frac{d}{dx} \left(\frac{y}{v} \right) = V \frac{dy}{dx} - u \frac{dv}{dx}$ V² v² Bernoulli & pale far dx = ur - u've + u" vg - u" vy + cohere u', u'', u''', u'' au succuive differentiation VI, V3, V3, V4 are succeive integrals of V. where Vi= [vdx Va= [vidx $q: 0 \int x^3 e^x dx = x^3 e^x - (3x^2) e^x + (6\pi) e^x - (6) e^x$ $(x+z^2) \cos nx \, dx = (x+z^2)(\sin nx)$ $+ (1+2x)(-\cos nx) + (2)(-\sin nx)$ $n^2 + (2)(-\sin nx)$

SURYA Gold Data_____Paga_____ NOTE SINNT =0 COBOT = (-1)? C08 2017 =1 CO8(2n+1) TT = -1 COBIT = -1, * COBBIT = COBSIT = COBFIT ==-1 * COS2TT = COSUTT = COSOTT = 1 $\frac{e^{az} \cos bz dz}{a^2 + b^2} = \frac{e^{az}}{a^{2} + b^{2}} \left(\frac{a \cos bz + b \sin bz}{a^{2} + b^{2}} \right)$ NOTES $e^{a^{2}c} \sinh x \, dx = e^{ax} \left[a \sinh x - b \cos bx \right]$ Module 2 Engineening mathematics - TT Fourier Series Definition of periodic function A real valued function for is said to be periodic of period T. If f(x+T)=f(x) T>0 eg: $\sin(x+2\pi) = \sin x$ $\cos(x+2\pi) = \cos x$ f(x) = K then f(x+2K) = f(x) = K $\frac{c}{c} p(x+2\kappa) = K$ Forgonometric Series and Eulers formula The Function K, Cognoc Binnoc (for n=1,2,3) our all periodic functions of period att Then $f(x) = \frac{\alpha_0}{8} + \frac{\beta}{n=1} an \cos n x + \frac{\beta}{n=1} bn \sin n x$

cohere ao, an, bn are all constants 18 Called a trigonometric Series Euler's is defined the Constants as an and br $a_{0} = i \int_{C} f(x) dx$ $a_{0} = i \int_{C} f(x) dx$ $a_{0} = i \int_{T} f(x) \cos nx dx$ $b_{n=1} \int_{T}^{C+2\pi} f(x) \sin nx \, dx$ problem 8 O obtain the fourier Series of $f(x) = \overline{T-x}$ in $0 < x < 2\overline{T}$ hence deduce that 2 $\frac{1-1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots = \frac{\pi}{4}$ Sol^{no} The fourner Servicy of f(x) having period STT is given by $f(x) = \frac{a_0}{2} + \frac{5}{2} \frac{a_0 \cos 8\pi c}{\pi c} + \frac{5}{2} \frac{b_0 \sin \pi x}{\pi c} = 0$ Now we have to find ao, an, by $a_0 = \int_{T} \int_{T$ and the generation $= \int_{T} \int_{0}^{2\pi} \frac{\pi - \chi}{2} d\chi$ concer and top specia $= \frac{1}{2\pi} \int_{0}^{2\pi} (\pi - \chi) d\chi$

SURYA Gold Oate____Page $= \frac{1}{2\pi} \begin{bmatrix} \pi 2 - \pi^2 \\ \pi \end{bmatrix}$ $=\frac{1}{2\pi}\int 2\pi^2 - (3\pi)^2 = \frac{1}{2}$ $= \frac{1}{2\pi} \begin{bmatrix} 2\pi^2 - 4\pi^2 \\ 2 \end{bmatrix}$ $= \frac{1}{2\pi} \begin{bmatrix} 4\pi^2 - 4\pi^2 \\ 2 \end{bmatrix}$ $= \frac{1}{2\pi} \times 0$ 00=0 $a_n = \frac{1}{\pi} \int_{-\pi}^{2\pi} f(x) \cos nx \, dx$ $= \int_{T} \int_{0}^{2\pi} \frac{\pi - x}{2} \cos x \, dx$ $\int_{\mathcal{A}} \int_{0}^{2\pi} (\pi - \chi) \cos \pi \chi \, d\chi$ Apply Bernoullis rule 271 $(\pi - x) Sinnx - (0 - i) (- \cos nx)$ n1 211 $\frac{1}{2\pi} \begin{bmatrix} (\pi - \chi) Sinn\chi & - CO_8 n\chi \\ n & n^2 \end{bmatrix}_{O}$ $\frac{1}{2\pi} \begin{bmatrix} (\pi - 2\pi) Sin(2n\pi) & - CO_8(2n\pi) \\ n & n^2 \end{bmatrix}$ $\begin{cases} (\pi - 0) \sin(0) - \cos(0) \\ n & n^2 \end{cases}$

SURTAGAS $\frac{-\cos 82n\pi}{n^2}$ + $\frac{\cos 8(0)}{n^2}$ 1 211 -C08211T=1 1 -V + V 21 /n2 +/n2 = 1 XO an=o $bn = \int_{T} \int_{0}^{2\pi} f(x) \sin nx \, dx$ I PT TT-X SINNX dx $\frac{1}{2\pi}\int_{0}^{2\pi}(\pi-x)\sin nx\,dx$ APPLY Bernoullis rule $(\pi - \pi) \left(\frac{-\cos n\pi}{n} \right) - \left(\frac{-\cos n\pi}{n} \right) - \left(\frac{-\sin n\pi}{n} \right) \left(\frac{-\sin n\pi}{n^2} \right)$ 1 211 $\frac{\pi}{n} \frac{\pi}{n} \frac{\pi}$ 211 WIKIT SIN 2NT = 0 = SINO 277 $\frac{\pi}{n} - \frac{\pi}{2} \left(\frac{-\cos n \pi}{n} \right)$ art $(\pi - 2\pi) \left(-\frac{\cos 2n\pi}{n} \right) - (\pi - 0)$ - COB(0) = 1 211 - TT X - COB 2 DIT + TT COB (0) n n = 1 $= \frac{1}{2\pi} \int \frac{\pi 1}{n} + \frac{1}{n} \times \frac{1}{n}$

SURYA Gold $= \frac{1}{2\pi} \left(\frac{\pi}{n} + \frac{\pi}{n} \right)$ 三 (左前) b=K · equation @ baomes $f(x) = a_0 + \sum_{n=1}^{\infty} a_n cogn x + \sum_{n=1}^{\infty} b_n Sinn x$ put ao, an, bn in () $f(x) = 0 + \frac{5}{2} (0) \cos n x + \frac{5}{2} \frac{1}{n=1} - \frac{1}{n=1} + \frac{5}{2} \cos n x + \frac{5}{2} \frac{1}{n=1} + \frac{5}{2} \cos n x + \frac{5}{2} \frac{1}{n=1} + \frac{5}{2} \cos n x + \frac{5}{$ $= 0 + 0 + \frac{\beta}{\beta} \frac{\beta_{10}}{\eta_{21}} \frac{\beta_{10}}{\eta_{22}}$ $\frac{f(x)}{p} = \frac{p}{2} \frac{g(x)}{p} = \frac{g(x)}{p} = \frac{g(x)}{p}$ $\omega \cdot \kappa \cdot T \qquad f(x) = tT - 2$ $\frac{\pi - \chi}{9} = \frac{\xi}{n = 1} \frac{Sinn\chi}{n} = \frac{3}{3}$ po get required series put X=T/2 in egn 3 $\frac{\pi - \pi/2}{2} = \frac{\sum Sinn\pi/2}{n}$ $\frac{\pi}{4} = \frac{\sin \pi}{2} + \frac{\sin 2(\pi/2)}{2}, \frac{\sin 3(\pi/2)}{3}, \frac{\sin u(\pi/2)}{4}$ f

 $\frac{\pi}{4} = \frac{\sin\pi}{2} + \frac{1}{2} + \frac{1}{3} + \frac{1}{2} + \frac{1}{3} + \frac{1}{2} + \frac{1}{3} + \frac{1$ $= 1 + 0 + 1 (-1) + \cdots$ Tr 24 $= 1 - 1 + \frac{1}{5} - \frac{1}{7} + \frac{1}{5} + \frac{1}{7} + \frac{1}$ Trú

SURYA Gold Oata____ obtain the fourier Series q^{2} function x^{2} in $-\pi < x < \pi$ in deduce that the 2 hence 0 $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{12}$ $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{6}$ (1) $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots = \frac{1}{7}$ (iii) 11-Fourier Series Fix having period ST 8010 i given by ao + 5 ancosnx + 5 bnsinnx -> () D n=1 Now we have to find as, an, bn by Euler's formula 2 ITCOSMIT. $\begin{aligned} a_{o} &= \int_{T} f(x) dx \\ \overline{T} &= \int_{T} \frac{T}{x^{2}} dx \\ \overline{T} &= \int_{T} \frac{T}{x^{2}} dx \end{aligned}$ 00 = 1 TINGOD $= \frac{1}{\pi} \begin{bmatrix} 2^3 \end{bmatrix}_{-\pi}^{\pi}$ 4(-1)2 $=\frac{1}{\pi}\begin{bmatrix} \pi^{3} & (-\pi)^{3} \\ 3 & (-\pi)^{3} \end{bmatrix}$ $= \frac{1}{\pi} \begin{bmatrix} \frac{\pi^3}{3} - x - \frac{\pi^3}{3} \end{bmatrix}$ $= \frac{1}{\pi} \left[\frac{\pi^{3}}{3} + \frac{\pi^{3}}{3} \right]$ = 1 × 22 3 $a_0 = 2\pi^2$ $a_0 - (2\pi 800 - 1)$

 $\frac{1}{\pi} \left[\frac{-x^2 \cos 8nx}{n} + \frac{2\cos 8nx}{n^3} \right]^{\pi}$ an = 1 f f(x) cognx dx Apply Bermulli's rule $= \frac{1}{\pi} \begin{bmatrix} -\pi^{2} \cos n\pi & + 2\cos n\pi \\ n & n^{3} \end{bmatrix} \begin{bmatrix} -\pi^{2} \cos n(-\pi) \\ n & n^{3} \end{bmatrix} \begin{bmatrix} -\pi^{2} \cos n(-\pi) \\ n & n^{3} \end{bmatrix} + \frac{2\cos n(-\pi)}{n^{3}} \end{bmatrix}$ 0 Sinnx n3 $Q_{n} = \frac{1}{\pi} \left[\frac{z^{2} s_{1} p_{n} x}{n} - \frac{(2x)(-c_{0} s_{n} x)}{n^{2}} + \frac{(+2)(7)}{n^{2}} \right]$ $= \frac{1}{n} - \frac{\pi^2 \cos 2\pi \pi}{n} + \frac{2 \cos 2\pi \pi}{n^3} + \frac{\pi^2 \cos 2\pi \pi}{n} + \frac{\pi^2 \cos 2\pi \pi}{n^3}$ W.K.T SINNT = O - 11 $=\frac{1}{\pi}\int_{n^{2}}^{T}\frac{\pi}{n^{2}}$ $bn = 1 \quad (o) \quad \Rightarrow [bn = o]$ put ao, an, bn in equation () $= \int \left\{ \frac{2\pi \cos n\pi}{n^2} - \frac{2\pi \cos n(-\pi)}{n^2} \right\} = \int \frac{1}{n^2} \int \frac$ $f(x) = \pi^{2} + \sum_{n=1}^{\infty} H(-n)^{n} \cos n x$ $f(x) = \pi^{2} + \sum_{n=1}^{\infty} H(-n)^{n} \cos n x$ $f(x) = x^{2} = \pi^{2} + \sum_{n=1}^{\infty} H(-n) \cos n x$ $put x = 0 \quad in \quad eqn \quad (3) \quad to \quad gut \quad required$ q_{eneg}^{2} = 1 2TTCOBNTT +2TCOBNTT TH $a_n = \int \left[4 \frac{\pi}{n^2} \cos n\pi \right]$ $\frac{a_n}{n^2} = \frac{H}{n^2} \cos n\pi$ $a_n = \frac{H}{n^2} \cos n\pi$ $a_n = \frac{H}{n^2} \cos n\pi$ $0 = \pi^{2} + \frac{5}{n=1} \frac{10^{2}}{n^{2}} \cos(0)$ $0 = \frac{\pi^2}{3} + \frac{45}{n=1} \frac{(-1)^7}{n^2} (1)$ $bn = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx$ $-\frac{\pi^2}{3} = +\frac{5}{2} \frac{(-1)^{7}}{7^{2}}$ $-\frac{\pi^2}{3} = 4\left[-\frac{1}{1^2} + \frac{1}{2^2} + \frac{(-1)}{3^2} + \frac{1}{4^2} + \frac{(-1)}{5^2} + \frac{1}{5^2} + \frac{(-1)}{5^2} + \frac{1}{5^2} + \frac{(-1)}{5^2} + \frac{$ $= \int_{T} \int_{T} x^{2} \sin nx \, dx$ $= \frac{1}{\pi} \left[\frac{x^{2}(-\cos 8nx) - (ax)(-\sin nx) + (a)(\cos nx)}{n^{2}} + \frac{1}{(a)(\cos nx)} - \frac{1}{(a)(\cos nx)} + \frac{1}{(a)(\cos nx)} +$

 $T_{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2}$ put x=TT in eqn (2) W.K.T $\pi^2 = \pi^2 + \frac{S}{h=1} \frac{H(-1)^n}{p^2} \cos n\pi$ CO8NTT = (-1)7 (-1)27 =1 $\pi^{2} = \pi^{2} + \frac{5}{5} + (-1)^{7} (-1)^{7}$ $\frac{1}{\pi^{2} - \frac{1}{12}} = \frac{1}{4} \frac{5}{5} \frac{(-1)}{1}$ $2\pi^{2} - 4 \sum_{n=1}^{\infty} \frac{1}{n^{2}}$ 211 $\frac{1}{2^2}$ + $\frac{1}{3^2}$ + $\frac{1}{4^2}$ 28 $\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2}$ By adding equation 3 & W $\frac{\pi^2}{12} + \frac{\pi^2}{6} - \left(\frac{1}{1^2} - \frac{1}{a^2} + \frac{1}{3^2} - \frac{1}{y^2} + \frac$ 1 52 $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2}$ 2.1 1 2.1 12 1 2.1 32 + 2. 1× 2× 1 3× 4×

SURYA Gold $\frac{3t^2}{12} = \frac{3}{12} \left(\frac{1}{12} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{5^2} + \frac{1}{5^2} \right)$ $\frac{3\pi^2}{94} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{5^2} + \frac{1}{8} + \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}$ 3) If $f(x) = \chi(2\pi - \chi)$ in $0 \le \chi \le 2\pi$, Show that $f(x) = 2\pi^2 - H(\cos \chi - \cos \chi)$, $\cos \chi = -\frac{1}{2}$ Solo The fourier Service of fix having period 2TT y given by $f(x) = \frac{\alpha_0}{2} + \frac{5}{2} \frac{\alpha_0}{\alpha_1} \cos \alpha_2 + \frac{5}{2} \frac{5}{\alpha_1} \sin \alpha_2 - D$ · we have to find as, an, bn by Euler's formula. $a_0 = \frac{1}{\pi} \int_{-\pi}^{2\pi} f(x) dx$ $= \frac{1}{\pi} \int_{-\pi}^{2\pi} \alpha (2\pi - \alpha) d\alpha$ $= \frac{1}{\pi} \int_{0}^{2\pi} (2\pi x - x^{2}) dx$ = $\frac{1}{\pi} \int_{0}^{2\pi} \frac{2\pi x^{2} - x^{3}}{2\pi}$ = $\frac{1}{\pi} \int_{0}^{2\pi} \frac{2\pi x^{2} - x^{3}}{3}$ $= \frac{1}{\pi} \begin{bmatrix} HT^3 - 8T^3 & -\overline{0} \end{bmatrix}$ = 1 [478]

UEYA Cold $Q_0 = 4\pi^2$ 121 f 12) COS n2 dx an= + 0 (2112-x2)008nx dx ~ 2TT TT Apply Bernoullis rule $(2\pi\chi-\chi^2)(+\sin\eta\chi) - (2\pi-2\chi)(+\pi-\cos\eta\chi)$ TT $(0-2)(+8inn\chi)$ ⁷⁰ n3) D 211 + (2TT-2x)COBNX n2 TT roe have to 0 211 (2TT-22) COSD2 000 $2\pi - 2(2\pi) \cos 2\pi \pi$ $\begin{cases} (2\pi - 0) \cos(0) \\ n^2 \end{cases}$ - 2TT. COS2NTT - 2TT (1) = +1 $n^2 \pi$ C082NTT = 1 -278)-27 - HTT 12 + 1 × h2 H = -4 +1 $a_n = -4$

SURYA Gold Date $bn = \frac{1}{\pi}$ fix) Sinnoc dx 211 (211x-2) Sinnz dx 612) T 0 $(2\pi \chi - \chi^2)(-\cos n\chi) - (2\pi - 2\chi)$ 1-xsinnx TT + (0-2) (-x-cosnz n3 211 F 211 -(21T x - x2) CO8NDC 2008120 TT n3 (uti - uti)COS2NTT N 2 Co,82nTT n3 26810 (1) De la Put 1 XO Then egn O become $\frac{p(n) = 4\pi^2}{3} + \frac{5}{n=1} + \frac{4}{n^2} + \frac{6}{n^2}$ $f(x) = \frac{2\pi}{3} + \frac{5}{n=1} - \frac{4}{n^2} \cos nx$ 211-3 -45 cosnx n=1 n2

bid a short $\frac{f(x)}{3} = \frac{2\pi^2}{7} - 4 \frac{\cos x}{7} + \frac{\cos x}{2^2} + \frac{\cos 3x}{3^2} + \frac{1}{7}$ $f(x) = x(2\pi - x)$ $\chi(2\pi - \chi) = 2\pi^2 - 4 \left[\frac{\cos \chi}{1^2} + \frac{\cos \chi}{2^2} + \frac{\cos \chi}{3^2} + \frac{\cos$ put x=0 x- x = 10 - x 1800- (x - x me) $0 = \frac{2\pi^2}{3} - 4 \left[\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{3^2} \right]$ $\frac{1}{3} - \frac{1}{12} + \frac{1}{12} +$ $\frac{2\pi^2}{3^{x}H_2} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{3^2$ 045(0). 03 $\frac{\pi^2}{1} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}$ put x=TT in (*) $T(2T - T) = 2T^{2} - 4 COBT + COBT + COBST + COSST +$ $\frac{\pi^2}{3} = \frac{2\pi^2}{12} = -4 \begin{pmatrix} -1 \\ -1 \\ 12 \end{pmatrix} + \frac{1}{2^2} + \frac{(-1)}{3^2} + \frac{(\frac{\pi^2}{3} = -4 \begin{bmatrix} -1 & + \\ -1 & + \\ 1^2 & 2^2 & - \\ 3^2 & - \\ -1^2 & 2^2 & - \\ 3^2 & - \\ -1^2 & -$ $\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2}$ add eqn $3 \in Q^{n} (4)$ $\frac{\pi^{2}}{6} + \frac{\pi^{2}}{12} = (\frac{1}{1^{2}} + \frac{1}{2^{2}} + \frac{1}{3^{2}} + \frac$ (12 - 1 + 1 - ···

SURYA Gold $\frac{2\pi^{2} + \pi^{2}}{12} = \frac{2\times 1}{1^{2}} + \frac{2\times 1}{3^{2}} + \frac{2\times 1}{5^{2}} + \frac{2\times 1}{5^{2}}$ $\frac{3\pi^2}{p_1} = 2 \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1^2 & 3^2 & 5^2 \end{bmatrix}$ * $\frac{\pi^2}{4x^2} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{5^2}$ $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}$ NOTE: $\int e^{ax} \cos bx \, dx = e^{ax} \left(a\cos bx + b\sin bx \right)$ $a^2 + b^2 \left(a\cos bx + b\sin bx \right)$ $\int e^{ax} \sin bx \, dx = e^{ax} \left(a \sin bx - b \cos bx \right)$ Drind the fourier Series to represent eax from x=-TT to 2C=TT Soins The given f(x) having period STT the fourier Series is 10. $f(x) = \frac{\alpha_0}{a} + \frac{\varepsilon}{n=1} \frac{\alpha_0 \cos nx}{n=1} + \frac{\varepsilon}{n=1} \frac{\omega_0}{n=1}$ Now we have to find as, an & bn by Euler's formula $a_0 = \int_{\overline{M}} \int_{\overline{M}} f(x) dx$ $= \int_{T} \int_{T} \frac{e^{\alpha x} dx}{\pi} = \int_{T} \frac{e^{\alpha x}}{\pi} \frac{\pi}{\pi}$

afrages	SUTTY A CAN
The state of the s	THE PARTY OF THE PARTY - PARTY
= 1 [= 0x]	- I TAD (-FATT COBOTT + CATT COBOTT)
	$= \int \frac{+\Omega}{\pi^{2} + n^{2}} \left(-\frac{e^{\alpha T} C O \beta O T}{e^{\alpha T} C O \beta O T} + e^{\alpha T} C O \beta O T \right)$
-0.X-0	TTO ADD - TO BOOM - OF COMOT
$= 1 \left[\overline{e}^{0} \overline{m} - \overline{e}^{0} \overline{x} \overline{m} \right]$	$= \underline{a} cosn\pi \left[-\overline{e}^{\alpha\pi} + e^{\alpha\pi} \right]$ $\pi \left(a^{2} + n^{2}\right)$
-om	$\pi(a^2+n^2)$
- 1 [e-all - ear	
$= \frac{1}{-\alpha \pi} e^{\alpha \tau} = e^{-\alpha \tau}$	X'' & - by 2 miles
$= \int \left[-e^{\alpha \pi} + e^{\alpha \pi} \right]$	$= \frac{2a\cos n\pi}{\pi(a^2 + n^2)} \begin{bmatrix} e^{a\pi} - e^{a\pi} \end{bmatrix}$
	$T(a^2 + n^2) [2]$
Notes [san casba da = cas family house	
I TOTT - E OTT	$\omega \cdot \kappa \cdot \tau = cosn \pi = c - 1)^n$
$= \frac{1}{\pi^2} \left[\frac{e^{\pi}}{e^{\pi}} - e^{-\alpha\pi} \right]$	
x14 & = by 2	$a_{\eta} = - a_{\alpha}(-D^{\eta} sinhatt$
A & & & & & & & & & & & & & & & &	$a_{\eta} = \frac{\alpha a_{\ell} \sigma}{\pi (a^2 + n^2)}$
$= 2 \left[e^{\alpha \pi} - \overline{e}^{\alpha \pi} \right] \text{io. K.T}$	
$= \frac{2}{\pi a} \begin{bmatrix} e^{a \pi} - \bar{e}^{\alpha \pi} \end{bmatrix} \qquad $	The BRCD Sinhon Install
2	$b_n = \int_{-\infty}^{\infty} e^{-\alpha x} \sin n \infty dx$
$a_0 = 2 sinha \pi$ $sinha x = e^{\alpha x} - e^{\alpha x}$	π
$u_0 = 2 \sin \pi u_0$ $a \pi 2$	7 1
	- 1 asphnx - ncosnx)
	TT (-0)2+n2 (
$an = \int_{\pi}^{\pi} f(x) \cos nx dx$	Prolott 5 Backy Storatt Costar
	= = h = = = = = = = = = = = = = = = = =
= 1 (" Eax cognx dx	$\pi(a^2+n^2)$
= 1 S e contra an	$= -n$ $e^{\alpha x} \cos nx$
	$T(a^2+n^2)$
$= \frac{1}{\pi} \left[\frac{e^{ax}}{a^2 + n^2} \left(- \alpha \cos nx + n \sin px \right) \right]$	+ I I DE DE TO DE TO A TO TO AND A LAND
	+ x0800 00 00 00 00 00 000
	7
$= \frac{1}{\pi} \int \frac{e^{-q\pi}}{a^2 + n^2} \left(-\frac{1}{2} \cos \theta n \pi + n \sin n \pi \pi \right) - \frac{e^{-\pi}}{a^2 + n^2} = \frac{1}{a^2 + n^2} \left(-\frac{1}{2} \cos \theta n \pi + n \sin \theta n \pi \pi \right)$	[-acosn(π) + nsinn(-π)]
11 attn l attn	

SURVACE AN $= -n \left[e^{-\alpha \pi} \cos n\pi - e \cos n(\pi) \right]$ $\pi (a^{2} + n^{2}) \left[e^{-\alpha \pi} \cos n\pi - e \cos n(\pi) \right]$ $= -n \left[e^{-\alpha T} \cos nT - e^{\alpha T} \cos nT \right]$ $T(a^{2}+n^{2}) \left[e^{-\alpha T} \cos nT - e^{\alpha T} \cos nT \right]$ $= n e^{a\pi} cogn\pi - e^{-a\pi} cogn\pi$ $\pi (a^{2} + m^{2})$ $= n \cos n\pi \qquad e^{\alpha \pi} - e^{\alpha \pi}$ $\pi (a^2 + n^2)$ XIY & + by 2 NO $= \frac{2 n \cos n \pi}{\pi (a^2 + n^2)} = e^{a \pi} - e^{a \pi}$ $uo \cdot K' \cdot T$ Sinh $x = e^{2} - e^{2}$ $b_{\eta} = a_{\pi}(-1)^{\eta} s_{\pi}(a_{\pi})^{\eta}$ xbx put ao, an & bin values in O $\frac{f(x)}{a\pi} = \frac{3}{2} \frac{1}{a\pi} + \frac{5}{n=1} \frac{3}{\pi} \frac{3}{a(-1)} \frac{1}{sinhat} \frac{1}{cosnx}$ ð $+ \frac{5}{n=1} \frac{2nC-1}{T} \frac{8inhatt}{a^2+n^2} \frac{2}{5} \frac{2}{5}$

SURYA Gold Data____Paga____ obtain the fourier Serving for 3 $f(x) = \int -\kappa \quad in (-\pi, o) \quad home \quad deduce$ $\int \kappa \quad in (o, \pi)$ that 1 - 13 + 15 - Y7 + Soil the formagen service of f(x) is defined in (-IT, IT) having period DIT is given by $f(x) = \frac{\alpha_0}{2} + \frac{\xi \alpha_0 \cos nx}{n=1} + \frac{\xi \delta_0 \sin nx}{n=1} - 0$ $a_0 = \frac{1}{\pi} \int_{-\pi}^{ct g \pi} \rho(x) dx$ -K BINNIT + M $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$ f f(x) d>c + f(x) dx - Kdx + Kdx Trato $\frac{1}{4} \left[-K \int I \cdot dx + K \int I \cdot dx \right]$ -K[x] + K [2]" = 1 $\left[0-(-\pi)\right] + \pi \left[\pi-0\right]$ = K $= \frac{K}{\pi} \left[-\frac{k\pi}{2} + \frac{\pi}{2} \right]$ 1102014 a0 2 0

(0:K:T COS(-O) = COSO SURVAGAU $<math>\therefore COS(-T) = COST$ $-\kappa \left\{ \frac{-1}{n} + \frac{\cos n(\pi)}{n} \right\} + \kappa \left\{ \frac{-\cos n(\pi)}{n} + \frac{1}{n} \right\}$ pix cosna da $-\{-\frac{1}{n}+\frac{1}{n}\}+\{-\frac{1}{n}+\frac{1}{n}\}$ far coon x dx K Horsesnada + (Has)cosnada $\frac{y_n}{n} - \frac{\cos n\pi}{n} + \frac{\cos n\pi}{n} + \frac{y_n}{n}$ $= \frac{\kappa}{\pi} \left(\frac{2}{n} - \frac{2\omega 8n\pi}{n} \right)$ - KCOBNXdX + KCOBNXdX = 2K (1- COSNIT) W.K.T W&NT = (-1)" TT -K [Binnx] + K Sinnx $b\eta = \frac{2\kappa}{\pi h} \left(1 - (-1)^n \right)$ · [0] put ao, an, bn in equation () $f(x) = \frac{0}{a} + 0 + \frac{\varepsilon}{2\pi} \frac{2\kappa}{n\pi} (1 - (-1)^n) \sin nx$ 9n =0 $f(x) = \frac{b}{n} \frac{\partial K}{\partial r} \frac{(1 - (-1)^n) Sinnx}{n\pi}$ ctan xb x) + xb => bn = /1 fra) Sinnada nigodd f(2) Sinna da 6n= 1 $\frac{n \cdot j \circ a d }{(-(-1)^n)} = 1 + 1 = 2, \text{ obsce } n = 1, 3, 5, 7 \dots$ $\frac{1 - (-1)^n}{(-(-1)^n)} = \frac{1 - (-1)^2}{(-(-1)^n)^2} = 1 - 1 = 0, \text{ where } n = 2, 4, 6 \dots$ TI o ron x f(x) Sinnxdx n is wen fassinnordor + $f(x) = \frac{2k}{\pi} \sum_{n=1,3,5}^{\infty} \frac{28inn x}{n}$ $f(x) = \frac{4k}{\pi} \sum_{n=1,3,5}^{\infty} \frac{8inn x}{n}$ $f(x) = \frac{4k}{\pi} \sum_{n=1,3,5}^{\infty} \frac{8inn x}{n}$ = T (-KSinnzdz+ KSinnzdz TI Π -+ 1 - 0 $f(\mathcal{Y}) = HK \prod_{n=1,3,5}^{\infty} \mathcal{B}(nn(T_2))$ - cogn 20 sta -K (-cosnz n + K $f(x) = \frac{4K}{\pi} \begin{cases} \frac{8 \ln \pi}{2} + \frac{5 \ln 2(\pi/2)}{2} + \frac{5 \ln 2(\pi/2)}{2} + \frac{5 \ln 3(\pi/2)}{2} + \frac{3}{2} \\ = \frac{4K}{\pi} \begin{cases} 1 + 0 - \frac{1}{3} + \frac{1}{2} + \frac{1}{3} \\ = \frac{1}{3} \end{cases}$ - (- (08(0)) (- cosn(- 17)) + K (- cosn(17)) (- cos (0) -1 -K n n n

f(DQ) = K, g(Dx) = K in O < X < TK= 4K (1-1 + 1 - 1 + ... W.K.T SINT -1 SIN 3T - -1 SINSIT = 1 - · $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{5} + \frac{1}{7} +$ the Fourier Series of the 6 Find $function \quad p(x) = \int -\pi \quad in \quad -\pi < x < 0$ $\int x \quad in \quad 0 < x < \pi$ hence deduce that Sum of reciprocal Squary of odd integers is equal to the Son's f(x) is defined in (-π, π) and fourier series of f(x), having period &π is rad given by $f(x) = \frac{a_0}{2} + \frac{s}{n=1} \frac{a_n \cos nx}{n=1} + \frac{s}{n=1} \frac{b_n \sin nx}{n=1} - 1$ $Q_0 = \prod_{n=1}^{\infty} \int_{-\pi}^{\pi} f(x) dx$ $= \frac{1}{\pi} \int_{-\pi}^{0} \frac{f(x) dx}{f(x) dx} = \frac{\pi}{f(x)} \int_{-\pi}^{\pi} \frac{f(x) dx}{f(x) dx}$ Sin 1(1/2) +1(03/1/2)+ eras and sustained 11-04

SURYA Gold Date____ Free. 800 $\frac{1}{\pi} \int_{-\pi}^{0} -\pi dx + \int_{\infty}^{\pi} dx$ $= \frac{1}{\pi} \left[-\pi \int dx dx + \int dx dx \right]$ $-\pi \left[2\right]_{-\pi}^{0} + \left[2^{2} \right]_{p}^{\pi}$ $-\pi \left(0 - (-\pi)\right) + (\pi/2 - 0)$ $\frac{1}{\pi} \left(-\pi \left(\pi \right) + \pi \right) + \frac{1}{2} \left[-\pi \left(\pi \right) + \frac{1}{2} \right]$ $= \frac{1}{\pi} \begin{bmatrix} -\pi + \pi^2 \\ -\pi \end{bmatrix}$ T alung a = - TT 2 $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx$ $\int f(x)\cos nx dx + \int f(x)\cos nx dx$

 $\frac{1}{n} \left[\frac{1}{n} \frac{1}{n} \right] + \left[\frac{1}{n} \frac{1}{n} \frac{1}{n} + \frac{1}{n} \frac{1}{n} \frac{1}{n} \right] + \frac{1}{n} \frac{$ COBNX JT h2 0 $\frac{\cos n\pi}{n^2} = \frac{\cos n\pi}{n^2}$ [08NTT - COS(0)] TTn2 J [(-1)ⁿ-1] Taking minus common $\frac{-1}{\pi n^2}$ $1 - (-1)^n$ E (20) ant f(x) sinnx dx bn = o f(x) Sinnx dx + f(x) Sinnxdx 70 10 = 1 $-\pi \sin nx dx + \int_{x}^{n} x \sin nx dx$ $\frac{APP1Y}{n} \frac{Berouui's orule}{n} + \frac{2}{n} \frac{2}{n} + \frac{2}{n} \frac{2}{n} \frac{2}{n} \frac{1}{n} \frac{1}{n$ sinnx $\left(\frac{\cos nx}{n}\right)^{0} + \left(-\frac{2\cos nx}{n} + \frac{3innx}{n^{2}}\right)^{0}$ +11 Scanned with CamScanner

 $= \int \left(\frac{\pi (\cos n)}{n} + \left(-\frac{\cos n}{n} \right) \right)^{\pi} + \left(-\frac{\cos n}{n} \right)^{\pi} \right)^{\pi} + \left(-\frac{\cos n}{n} \right)^{\pi} + \left(-\frac{\cos n}{n} \right)^{\pi} + \left(-\frac{\cos n}{n} \right)^{\pi} \right)^{\pi} + \left(-\frac{\cos n}{n} \right)^{\pi} + \left($ $=\frac{1}{\pi}\left(\frac{1}{n}\left(\frac{\cos \theta}{n}-\frac{\cos \theta}{n}\right)+\left(\frac{-\pi\cos \theta}{n}+\frac{\cos \theta}{n}\right)\right)$ $= \frac{1}{\pi n} \int \pi (1 - \cos n\pi) - \pi \cos n\pi$ $= \pi \left(1 - \cos n\pi - \cos n\pi \right)$ $= \frac{1}{n} (1 - 2 \cos n\pi)$ $b_n = \frac{1}{n} (1 - 2(-1)^n)$ 1-(1) = Q when n y Even put ao, an, bn in equation () $f(x) = -\frac{\pi}{2} + \frac{5}{2} - \frac{1}{12} + \frac{5}{2} - \frac{1}{2} + \frac{5}{2} + \frac{1}{2} + \frac{1}{$ E 1/n {1-2(-1) } sinnx To deduce the required Series let ay put x=0 in the fourier Series It Should be observed from the given fire) that rc=0 y a point of dig continuity & hence the Series converge to $\frac{1}{2} \left[f(0^{+}) + f(0^{-}) \right] = \frac{1}{2} \left[0 + (-\pi) \right]$ Sinnx $= -\pi/2$ Because to the night of 0, in (0, TT) f(x)=x and f(ot)=0. Tay o to the sleft of 0 in (-T, 0) f(x) = - TT and f(0) = - TT

· [r (cosnx 1 + (-xcosnx) - 1 hence the fourier series becomes (a240 + 0/28) $-\frac{\pi}{2} = -\frac{\pi}{4} + \frac{5}{2} - \frac{1}{12} \left\{ 1 - (-1)^{n} \right\} (cos_{0})$ + = 1 {1/2 (-1) 2 Sin (0) $-\frac{\pi}{2} + \frac{\pi}{4} = \frac{5}{n=1} - \frac{1}{\pi n^2} \left\{ 1 - (-1)^n \right\}$ $FTT = FI \sum_{j=1}^{\infty} \frac{1}{2} \frac{1}{2}$ $\Rightarrow \pi^2 = \frac{\varepsilon}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} - \frac{1}{2} \frac{$ But $1 - (-1)^n = \begin{cases} 1 - (1) = 0 & ahin n y even \\ 1 - (-1)^n = \begin{cases} 1 - (-1) = 2 & ahin n y odd \end{cases}$ $\frac{\pi^2}{4} = \frac{5}{24} \frac{2}{h^2}$ $\frac{\pi^2}{\pi} = \frac{2}{12} + \frac{2}{3^2} + \frac{2}{5^2} + \frac{2}{$ $\frac{1}{4} = 2\left(\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots\right)$ $\frac{1}{12} = \frac{1}{12} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{5$ 2.3 pt wardpas pit 400 500000 of personal $\frac{DO yOWYSelf}{8 If f(x) = \int x in O \le x \le T$ S.T fourier Benig of f(x) in $[0, 2\pi]$ $y = \frac{1}{2} \int \frac{\cos 2x}{1 - \frac{1}{2}} \int \frac{\cos 2x}{1 - \frac{\cos 2x}{1$

SURYA Gold Date____Page___ Any: Qo = IT $a_n = -2 \{1 - (-1)^n\}$ bn=0 put x=0 to deduce given series. umen co-efficients ane given by Fourier Series of even ound odd functions in the interval (-TT, TT) A function fras is said to be even if f(-2c) = f(2c) x b x (2c) + 1 (2c) + 1eg: x^2 , x^4 , x^6 $\cos x$ age even function -on. $f(x) = x^2$ pep (acc, pc, by, -x) $f(-x) = 6x) = x^2$ f(-x) = f(x)A function f(x) is said to be odd if f(-x) = -f(x)eg: $f(x) = x, x^3, x^5, ..., 8in x$ are odd functions. cale (): for isocados)q unchin changed Replace or by - sebulto f(-x) = -x f(-x) = -x f(-x) = -f(x) f(-x) = -x f(-x) = -x f(-x) = -x f(-x) = -x f(-x) = -xProperty O: The product of two even functions and that of two odd function is always even. where as product of an even and an odd function is always odd.

Property Q: (f(x) dx = (2) f(x) dx if f(x) ; even 0 if fix) 4 odd 0 = 00 Now, Suppose the periodic function f(x) is defined in the interval (-IT, T) them fourier co-efficients are given by Soin $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx, \quad a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$ $bn = \int_{T} \int_{T} f(x) \sin nx \, dx$ CaseO: f(x) is an even function then clearly to caludate tonof A $a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) dx \quad a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \omega f(nx) dx$ $i \beta - \beta (-\infty) = -\beta (\infty)$ bn=0 20 comp cale Q: f(x) is odd function cleanly to Caludate a=0 an=0 $bn = 2 \int_{T}^{T} f(x) \sin nx dx$ property O: The product of two ever functions and that of two odd function is always even where a product of an even and an edd function and allough odd .

SURYA Gold Date_____Pace Problems 1) Fond the fourier genies of $f(x) = \int \frac{2x}{1+\frac{\pi}{\pi}} - \frac{\pi}{1-\pi} x -$ TOPIE (The Fourier Series of f(x) having period we Shall Cher fix) is even or odd an= -6 f(x) = 1 + 22cThe minu common @ f (2) = 1 - 2x f(-x) = 1 - 2x T T f(-x) = 1 + 2x T f(-x) = 1 + 2xf(-x) = f(x)0 = f(-x) = f(x): livon function is even, $cleanly \quad bn=0$ T $a_0 = \frac{2}{\pi} \int f(x) dx \qquad a_n = \frac{2}{\pi} \int f(x) cognx dx$ T $= \frac{2}{\pi} \int_{-\pi}^{\pi} \frac{1}{\pi} dx \qquad \alpha_n = \frac{2}{\pi} \int_{-\pi}^{\pi} \frac{1}{\pi} dx$ $= \frac{2}{\pi} \begin{bmatrix} x - 2x^2 \\ 3\pi \end{bmatrix} \begin{bmatrix} \pi \\ 0 \end{bmatrix} = \frac{2}{\pi} \begin{bmatrix} \pi \\ -2x \\ \pi \end{bmatrix} \begin{bmatrix} x - 2x \\ -2x \\ 0 \end{bmatrix} \begin{bmatrix} \pi \\ -2x \\ \pi \end{bmatrix} \begin{bmatrix} x - 2x \\ -2x \\ -2x \\ 0 \end{bmatrix} \begin{bmatrix} x - 2x \\ -2x \\ -2x$ $\begin{bmatrix} x - x^2 \\ T \end{bmatrix} = \begin{bmatrix} Apply Bernoulli & Dule \\ T \end{bmatrix}$ - 2 Tacina

Scanned with CamScanner

27 an= 2 17 11 --0 x - 008nx Isinnx h 0 an= 2 T - 22 2/20 2 . co8nx 10 an=2 = 2 ×0 + 5 basing cosnx. DZa0 = 0 period att - 2 TD² an = 2 T (COBNIT - COBO) Shall Chek flow 18 even or ald we Shall an = -4 5 (-1)^-12 f(x) Tala minu common $a_n = 4 \int (-6)^n f$ wikit bn=0 eqn @ becomes egn 06 £1-1-1)n2 cosnx $f(x) = 0 + \sum_{n=1}^{\infty} \frac{4}{\pi n^2}$ +0 $f(x) = \frac{4}{\pi n^2} \frac{\xi}{n=1} \frac{(1-(-1)^n) \cos n \chi}{(1-(-1)^n)}$

(a) obtain the fourier Series in (-IT) for f(x) = 20008 x Son' Fourier Series of fix having period 2TT is given by $f(z) = \frac{\alpha_0}{\beta} + \frac{\xi}{\xi} an \cos nz + \frac{\xi}{\xi} bn \sin nz - 0$ we shall cher f(x) = DCCOSx for even or odd nature f(x) = xco & x Replace sc by -x $f(-x) = -x\cos(-x)$ $x - \frac{1}{2}(-x) = -\frac{1}{2}\cos(-x) - \frac{1}{2}\cos(-x) = \cos(-x) - \frac{1}{2}\cos(-x) - \frac{1}{2}\cos(-x) = \cos(-x) - \frac{1}{2}\cos(-x) - \frac{1}{2}\cos(-x) = -\frac{1}{2}\cos(-x) - \frac{1}{2}\cos(-x) - \frac{1}{2}\cos(-x) = -\frac{1}{2}\cos(-x) = -\frac{$ bn= 2 (f(x) sinnxdx $= \frac{2}{\pi} \int_{-\pi}^{\pi} \frac{1}{2} \cos x \sin x \sin x dx$ bn=2 (" z Sinn x cosx dx -> 2) USE SINA COS B= 1/2 SSIN(A+B) + SIN (A-B)? $= \frac{2}{\pi} \left[\frac{1}{2} \left[\frac{1}{2} \frac{1}$ $= \underbrace{\mathbb{A}}_{\mathcal{X}} \underbrace{\mathbb{A}}_{\mathcal{X}} \int \underbrace{\mathbb{A}}_{\mathcal{X}} \operatorname{Sin}(n+i) \operatorname{x} d\operatorname{x}_{\mathcal{X}} + \underbrace{\mathbb{X}}_{\mathcal{Sin}(n-i) \operatorname{x}} d\operatorname{x}_{\mathcal{X}}$

SURYA Gold Date____ (S) REPLY BETNOULLI'S AULE $\frac{1}{\pi} \begin{cases} x - cos(n+1)x - (1)x - 1 + sin(n+1)x \\ (n+1) & (n+1) \end{cases}$ $+ \left(\begin{array}{c} x \times -\cos(n-1) \\ (n-1) \end{array} \right) \left(\begin{array}{c} x - (1) \times -1 \\ (n-1) \end{array} \right) \times \left(\begin{array}{c} x \sin(n-1) \\ (n-1) \end{array} \right)$ $\frac{-2c \cos(n+1)2c}{(n+1)} + \frac{\sin(n+1)2}{(n+1)^2} + \frac{-2(\cos(n-1)2)}{(n-1)} + \frac{\sin(n+1)2}{(n-1)} + \frac{\sin(n+1)2}{(n$ we shall now find by when $-\pi \cos(n+i)\pi$ $(n+i) = + (-\pi \cos(n-i)\pi)$ $(n+i) = + (-\pi \cos(n-i)\pi)$ $\frac{1}{\left[\frac{1}{(n+1)} + 1 \right]} = \frac{1}{n-1}$ $-\overline{M} = \begin{bmatrix} (-1)^{n+1} + (-1)^{n-1} \\ (-1)^{n+1} \\ (-1)^{n+1} \end{bmatrix}$ $-M - D = \left(\int (f(T)) (+ f(T)) \right)$ $= - \frac{(-1)^{n} \cdot (-1)^{n} \cdot (-1$ $(-1)^{-1} = \frac{1}{-1}$ $-(-1)^{n}$ -1 + -1n+1 + n-1 $= EID^{n} \int_{n+1}^{1} \frac{1}{n-1}$ A plaga $= (-1)^{n} [n - 1 + n + 1]$

SURYA Call $b_n = \frac{2n(-1)^n}{n^2 - 1} (n \neq 1)$ egn D become 8 $f(x) = 0 + 0 + \frac{5}{2} \frac{9n(-1)^{n} sinnx}{n^{2}-1}$ $f(x) = \frac{5}{2} \frac{2n(-1)^{n} sinnx}{n^{2}-1} \longrightarrow 2$ Surfier we shall now find by when n=1(Un) nie i.e to find b, let up confider by a given by D T $b_n = 2 \int c since cosx dx$ T $b_n = 2 \int c since cosx dx$ put n = 1 + (t) = 1 - (t+n) = (t+n) $b_1 = 2 \int x \sin x \cos x dx$ x14 & + by 2 bi=2 ("ax Sinoccosx dx $=\frac{2}{\pi}\int_{-\pi}^{\pi}\frac{x\sin 2x}{2}dx$ bi = 1 ft xsinzx dx T Jon Apply Bernaule

SURYA Gold Dete____ Forgand the function f(x) = x Sinx T $b_1 = \frac{1}{\pi} \int \frac{2 \times -\cos 2\pi}{2} = \frac{1}{2} \times \frac{1}{2} \times$ O $= \frac{1}{\pi} \begin{bmatrix} -\chi \cos 2\chi + \sin 2\chi \\ 2 \end{bmatrix} = \begin{bmatrix} -\chi \cos 2\chi + \sin 2\chi \\ -\chi \sin 2\chi \end{bmatrix}$ Learner Series having period 25 $= \frac{1}{\pi} \begin{bmatrix} -x\cos 2x \\ 2 \end{bmatrix}_{0}$ $= \frac{1}{2\pi} \left[-\pi \cos 2\pi - 0 \right]$ E - 20 X - SIN : $= \frac{1}{2\pi} \times -\pi \times 1^{-1} \times 1^{-1}$ eras is even function Contequently briso b, = -1 = 2/1 hence eqn @ Can be written ay to p(x)= ao 1 & ancosnx + b, sin >c+ 5 b, sinnx p=2 . $f(x) = 0 + 0 + (-\frac{1}{2}) \sin x + \frac{6}{52n} (-1)^{n} \sin nx$ f(x) = -1 Sinx + 5 2n(-) Sinnx= 3 (-TT 20377 + 0 - 3

(3) Expand the function $f(x) = \infty Sinx ay a$ Fourier Besieß in the interval - TISXSTdeduce that 1-3 3.5 + 5.7 4 Fourier Series having period 211 is given by $f(x) = \frac{\alpha_0}{3} + \frac{5}{2} \frac{\alpha_0}{n=1} + \frac{5}{n=1} \frac{\beta_0}{n=1}$ Son we shall Check the nature of function f(x) = pcsinx-TTC082TT - 0 $f(-x) = -x \sin(-x)$ = - x - sin x = pesinx - x f(-x) = f(x) $\therefore f(x) is even function$ Conjequently bn=01-= d $a_0 = 2 \int f(x) dx - a_0 = 2 \int x \sin x dx$ apply Bernoull's sule $\begin{array}{c}
\Omega_0 = 2 \\
\overline{n}
\end{array} \quad \sum_{T \in \mathcal{S}} \sum_{x \in \mathcal{S}} \sum_{x$ nae nt-SINT = 0 = Sino $= \frac{2}{\pi} \left[-2ccogx \right]$ Stanted Sinnix 2 - TT COSTI +0 , a= 2 (-TT X-1)

SURYA Gold Date____Page_ a = att Q. = 2 an= 2 (prx) cognx dx an= 2 posinxcosnx dx -> 2 using Sinacos B = 1 Ssin(A+B) + Sin(A-B) $an = \frac{2}{\pi} \int \frac{x \cdot 1}{2} \left\{ Sin(x+nx) + gin(x-nx) \right\} dx$ $= \frac{1}{\pi} \int_{D} \frac{x \sin(1+n)x dx}{x + \int x \sin(1-n)x dx}$ Sin(1-n) = Sin (-(n-1)) = - Sin(n-1) = $\int_{T} \int_{D}^{T} x Sin(n+i) x dx + \int_{T}^{T} x - Sin(n-i) dx$ 1= (1) 1 $= \int \int \sum Sin(n+1) x dx - \int x Sin(n-1) dx$ Apply Bernoulli's quie $\begin{bmatrix} \chi X - COB(D+1)\chi & - (1)\chi - 1 & SID(D+1) \\ CD+1 & D+1 & D+1 \end{bmatrix}$ T $\frac{\chi - \cos(n-1)\chi}{(n-1)} - \frac{(1)\chi - 1}{(n-1)} \times \frac{\sin(n-1)\chi}{(n-1)}$ But Sin(n+1) F= O=Sin(n-1) T $-\frac{1}{(n+1)} + \frac{1}{2(08(n-1))} + \frac{1}{(n-1)}$

PED ASTRID $\frac{1}{\pi} - \frac{\pi \cos(n+1)\pi}{(n+1)} + \frac{\pi \cos(n-1)\pi}{(n-1)} + \frac{1}{2} +$ $\frac{-\cos(n+1)\pi}{(n+1)} + \frac{\cos(n-1)\pi}{(n-1)}$ $\frac{-1}{(n+i)} \times (-i)^{n+1} + \frac{1}{(n-i)} \times (-i)^{n-1}$ $= \underbrace{C_{1}}_{(n+1)} \underbrace{C_{-1}}_{(n-1)} \underbrace{C_{-1}}_{(n-1)} \underbrace{C_{0}}_{(n-1)} \underbrace{C_{0}}_{(n+1)} \underbrace{C_{0}}_{(n-1)} \underbrace{C_{0}}_{(n-1)}$ rb Sc $= (-1)^{n+2} (-1)^{n-1}$ (n+1) (n-1)(1-a)ai2 - = ((1-a) $= \frac{(-1)^{n} \cdot (-1)^{2}}{(n+1)} + \frac{(-1)^{n} \cdot (-1)^{-1}}{(n-1)}$ $\int (-1)^{2} = 1$ $(-1)^{-1} = +1 = -1$ $= (-1)^{n} (-1)^{2} + (-1)^{-1}$ $= (-1)^{n} (1 + -1)^{n+1} (n+1)^{n-1}$ $= (-1)^n \left[\frac{h-1}{p^2} - \frac{1}{p^2} \right]$ XX-COB(N+1)Z - 20x - 2081 0-1 21-10 013 $= \frac{(-1)^{2} (-2)}{n^{2} - 1}$ $= \frac{2 \times -1 \times (-1)^{n}}{n^{2} - 1}$ $= \frac{2 (-1)^{n+1}}{n^{2} + 1}$ where $n \neq 1$ D-1

SURYA Gold we shall now find an when n=1 i.e to find a, let ey convider an ay given by (2) putting n=1 we have $a_{i} = 2 \int_{0}^{\pi} zsinzcogzdz$ $= \frac{2}{\pi} \int_{0}^{\pi} zx 2sinzcogzdz$ $= \frac{2}{\pi} \int_{0}^{\pi} zx 2sinzcogzdz$ $=\frac{24}{\pi}\int_{0}^{\pi} x \sin 2x \, dx$ T $= \frac{1}{\pi} \begin{bmatrix} x x - \cos 822x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 822x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 822x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 822x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 822x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 822x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 822x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 822x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 822x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 822x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 822x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 822x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 822x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 822x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 822x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 822x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 82x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 82x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 82x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 82x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 82x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 82x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 82x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 82x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 82x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 82x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 8x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 8x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 8x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 8x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 8x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 8x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 8x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 8x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 8x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 8x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 8x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 8x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 8x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 8x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 8x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 8x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 8x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 8x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 8x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 8x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 8x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 8x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 8x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 8x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 8x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 8x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 8x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 8x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 8x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 8x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 8x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 8x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 8x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 8x \\ 2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x x - \cos 8x$ Bin 211 = 0 <u>I [-x 0082x]</u> П 2] $= \frac{1}{T} \left[\frac{-T}{2} \left(\frac{1}{2} + 0 \right) \right]$ existal in -# 4265T and ob = - CO8217 2 = -1 (0.K.T CO[2TT=) $a_1 = -\frac{1}{2}$ put bn=0 in O we have $f(x) = a_0 + \frac{c}{2}a_n \cos nx$ 2 + n=1 $f(x) = \frac{a_0}{2} + q \cos n x + \frac{5}{2}a_n \cos n x$ put a_0, a_1, a_n put a_0, a_1, a_n part a_0, a_1, a_1 part a_0, a_1 part a_1, a_1 part a_1, a_1 part a_1, a_2 part a_1

To deduce the Serving, let up put x= Ti/2 $\frac{\pi}{2} \frac{g_{1}n\pi}{2} = 1 - \frac{1}{2} \frac{\cos \pi}{2} + \frac{25}{2} \frac{c - n^{n+1}}{n - 2} \frac{\cos n\pi}{3^2 - 1} = 2$ $\frac{ginu \ Sintt}{2} = 1 \ \frac{cogt}{2} = 0$ $\frac{1}{2} \qquad \frac{cogt}{2} = 0$ $\frac{1}{2} \qquad \frac{cogt}{2} = 1 - 0 + 2 \ \frac{5}{2} \ \frac{cogt}{2} = 0$ $\frac{1}{2} \qquad \frac{1}{2} = 1 - 0 + 2 \ \frac{5}{2} \ \frac{cogt}{2} = 0$ $\frac{\pi}{2} - 1 = 2 \left(\frac{-1)^3}{3} \cos 2\pi + \frac{-1)^4}{8} \cos 3\pi + \frac{-10}{2} + \frac{-10}{2} \cos 3\pi + \frac{-10}{2} + \frac{$ $\frac{T-2}{2} = \left(\frac{-1}{3} \times \frac{-1}{3} + \frac{1}{3} \times \frac{-1}{3} + \frac{-1}{3} \times \frac{-1}{3} \times \frac{-1}{3} + \frac{-1}{3} \times \frac{-1}{3$ $\frac{77-2}{11} = \frac{1}{3} - \frac{1}{15} + \cdots$ $\frac{\pi - 2}{u} = \frac{1}{1 \cdot 3} = \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} = \frac{1}{1 \cdot 3}$ (*) Sketch the graph of the function g(x) = |x| in $-\pi \leq 2c \leq \pi$ and obtain pourier Series. Hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots = \frac{11^2}{8}$ $\frac{g_{0}}{2} = \frac{g(x)}{f(x)} = \frac{1}{|x|} \text{ in } -\pi \leq x \leq \pi \text{ meany that}$ $\frac{g(x)}{f(x)} = \frac{1}{|x|} \text{ in } -\pi \leq x \leq \pi \text{ meany that}$ $\frac{g(x)}{f(x)} = \frac{1}{|x|} \text{ in } -\pi \leq x \leq \pi \text{ meany that}$ $\frac{g(x)}{f(x)} = \frac{1}{|x|} \text{ of negative value and}$ $\frac{g(x)}{f(x)} = \frac{g(x)}{f(x)} \text{ may be split in to}$ $\frac{g(x)}{f(x)} = \frac{1}{|x|} \text{ may be split in to}$ $f(x) = \int -\pi \quad in \quad -\pi \leq x \leq 0$ $f(x) = \int \pi \quad x \quad in \quad 0 \leq x \leq \pi$ an The equations y=x and y=-x represents straight line through the origin

with slopes 1, -1 A and graph y ay follows y=x y=x The fourier Series of fine having pero, od 21 is given by P(X)=ao + Ean cognx + Ebn Sinnx -0 we shall check f(x) = 1x1 for even or odd nature f(-x) = |-x| = |x| = f(x)f(-x) = f(x) and hence f(x) is even Consequently bn = 0 $a_0 = 2 \int_{\overline{T}}^{\overline{T}} f(x) dx, \quad a_n = 2 \int_{\overline{T}}^{\overline{T}} f(x) \omega_{nx} dx$ here f(x) = |x| = x for $x \in (0, \pi)$ $\alpha_0 = 2 \int_0^{\pi} x \, dx$ man renum = I H $\frac{\pi}{\alpha_0 = \pi}$ $\alpha_n = \frac{2}{\pi} \int_0^{\pi} \frac{z \cos 8n x \, dx}{\sqrt{\pi}}$

Apply Bernoullis rule $a_n = \frac{2}{\pi} \left[\frac{z \left(sinnx \right) - 1 \left(\frac{-cosnx}{p^2} \right)}{n} \right]$ $= \frac{2}{\pi n^2} \begin{bmatrix} \cos nx \end{bmatrix}^{T} \quad \sin ce \quad \sin n\pi = 0 = \sin 0$ $= \frac{2}{\pi n^2} \left(\cos n \pi - \cos n \right)$ $=\frac{2}{\pi n^2}\left(l^{-1}n^{-1}\right)$ talle - common $a_n = -2 (1 - (-1)^n)$ put ao, an, bn in O $f(x) = \pi + \frac{5}{2} - \frac{2}{2} \int 1 - (-1)^n \int \cos nx$ To deduce the series det up put x=0 in the fourner genies $f(0) = \frac{\pi}{2} - \frac{2}{\pi} \frac{5}{2} \frac{1}{12} \frac{1}{2} - (-1)^{n} \frac{1}{2} \cdot \cos(0)$ $0 = TT - 2 \frac{5}{2} \frac{1}{1 - (-1)^{2}} (1)$ $\frac{1}{2} = \frac{1}{2} \frac{2}{2} \frac{5}{1} \frac{(1-(-1)^n)}{n^2}$ $\frac{\pi^2}{H} = \frac{5}{1-(-1)^2}$

SURYA Gold Date____Fage___/ $\frac{\pi^2}{11} = \frac{5}{2} \frac{1}{12} (1 - (-1)^2)$ $(1-(-1)^{2}) = \int (1-(1)) = 0 \quad \text{if } n \quad \text{in even}$ $(1-(-1)) = 2 \quad \text{if } n \quad \text{in odd}$ home we get, $\pi^2 = 5$ 2×1 4 $n=1,3,5\cdots, n^2$ $\frac{T^{2}}{4} = 2 \frac{5}{1} \frac{1}{n=1,3,5\cdots n^{2}}$ $\frac{\pi^2}{8} = \frac{5}{n=1,3,5} + \frac{1}{n^2}$ $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}$ $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}$ obtain the fourier Series for fattersong f(x) = Simmo in the range (-π, π) where mis neither zero nor an integer ¿ Fourier Series of f(x) having period 2TT 18 given by $f(x) = a_0 + \frac{s}{2}a_n \cos n 2c + \frac{s}{2}b_n \sin n 2c - 0$ we shall check f(x)=sinm x for even or odd $f(-\infty) = Sim(-\infty)$ $f(-\infty) = -Sinm\infty$ f(x) = -f(x) f(x) = -f(x) f(x) = -f(x) f(x) = -f(x)

$$\begin{array}{c} a_{0}=0 \quad a_{n}=0 \\ b_{n}=\frac{3}{2} \int_{0}^{T} f(x) \sin nx \, dx \\ \overline{T} \int_{0}^{T} \\ = \frac{9}{8} \int_{0}^{\pi} \sin nx \sin nx \, dx \\ \overline{T} \int_{0}^{\pi} \int_{0}^{\pi} \cos (n-x) x - \cos (n+x) x \int dx \\ \overline{T} \int_{0}^{\pi} \int_{0}^{\pi} \cos (n-n) x - \cos (n+n) x \int dx \\ = \frac{1}{T} \int_{0}^{\pi} (\cos (n-n) x - \cos (n+n) x) \int dx \\ = \frac{1}{T} \int_{0}^{\pi} (\sin(n-n) x - \sin(n) x) \int_{0}^{\pi} \int_{0}^{\pi} (\sin(n+n) x) \\ = \frac{1}{T} \int_{0}^{\pi} (\sin(n-n) \pi - \sin(n)) \int_{0}^{\pi} \int_{0}^{\pi} (\sin(n+n) \pi) \\ = \frac{1}{T} \int_{0}^{\pi} (\sin(n-n\pi)) - \frac{1}{T} \int_{0}^{\pi} (\sin(n\pi+n)) \\ = \frac{1}{T} \int_{\pi}^{\pi} (\sin(n\pi - n\pi)) - \frac{1}{T} \int_{0}^{\pi} \sin(n\pi + n) \\ = \frac{1}{T} \int_{\pi}^{\pi} \int_{0}^{\pi} \sin(n\pi \cos n\pi - \cos n\pi - \cos n\pi \sin n\pi) \\ = \frac{1}{T} \int_{\pi}^{\pi} \int_{0}^{\pi} \sin(n\pi - (n\pi)) \int_{0}^{\pi} \int_{0}^{\pi}$$

SURYA Gold = - [SINMIT (-1)" (m+h-m+n) $\frac{1}{\pi} \left[\frac{sinm\pi (-i)^n}{m^2 - n^2} (2n) \right]$ put a, an, bn in O $f(x) = \frac{5}{n=1} 2n \frac{8}{2n-1}^n \frac{1}{3} \sin m\pi \frac{1}{3} \frac{1}{3} \frac{1}{1} \frac{1}{1} (m^2 - n^2)$ Even and old nature of f(x) in (0,2T) and associated article fourier services f(x) is said to be even if $f(2\pi - x) = f(x)$ eg: COS (2TT-Z) = COS X = f(Z) f(2) is even function for is said to be odd if $f(2\pi - x) = -f(x)$ $e_g: Sin(2\pi - x) = -Sinx = -f(x), odd$ f(x) = -Sinx = -f(x), odd f(x) = -f(x), oddW.K.T Integral property (fix) dx= 2 je p(x) doc ip p(x) is even if f(x) y odd 0 If f(x) y a periodic function of period 2TT defined in (0, 2TT) then fourier co-efficients are given by

 $\begin{aligned} a_0 &= \iint_0 f(x) dx \quad a_n &= \iint_0 f(x) \cos n \pi dx \\ &= \iint_0 f(x) dx \quad a_n &= \iint_0 f(x) \cos n \pi dx \end{aligned}$ $bn = \int_{T} \int_{0}^{2\pi} f(x) \sin nx \, dx$ Calle O: If f (x) is even function $a_0 = 2 \int_{T} f(z) dz$ $a_n = 2 \int_{T}^{T} f(x) \cos nx \, dx$ Even and add noture of sen in loan associated artig = nd rier Belies Call Q' If f (20) y odd function 0800 LT $a_0 = 0$ $a_n = 0$ $b_n = 2 \int f(x) Sinn2dx$ x) is said to be odd if P(2T-2t) = -P(2t)19. SIN(2T-X)=-SINX=-F(X) add

SURYA Gold obtain the fourier Series expansion of 0 the function fix)= for in oxxxn 2-21T in TIXXX21T hena dedua that $\pi = 1 - 1 + 1 - \dots$ The fourier series of period att is du! given by $f(x) = \frac{Q_0}{2} + \frac{5}{2} an \cos 8nx + \frac{5}{5} bn \sin nx - 0$ we shall check the given function is even or odd $f(x) = \infty$ $f(2\pi - x) = 2\pi - 2\pi - x$ $= -(\infty - 2\pi)$ = -f(x)f(x) = -f(x)liven function is odd a = 0, an = 0 $b_n = \frac{\partial}{\partial r} \int_{-\pi}^{\pi} f(x) S(nnx) dx$ = $\frac{2}{\pi} \int \frac{\pi}{2c} \frac{3c}{8innx} dx$ TT $= \frac{2}{\pi} \frac{2x - \cos nx}{n} - \frac{(1)x - 1}{n} \frac{x \sin nx}{n}$ ·· SINN IT = 0 = SINO 0 $= \frac{2}{\pi} \left[-\frac{2}{2} \cos 2\pi n \right]^{T}$ $= \frac{2}{\pi n} \left[-\frac{\pi}{2} \cos 2\pi n \right]^{T} + 0^{T}$ $= \frac{2}{\pi n} \left[-\frac{\pi}{2} \cos 2\pi n \right]^{T}$

SURYA Gold Date____ --- Fage____/ = & (-T(-1)ⁿ) #1 $b_{1} = -2(-1)^{2}$ put ao, an, bn in eqn O $f(x) = \frac{5}{n} = \frac{2}{n} (-1)^n \frac{1}{8} \sin nx$ f(x) = x $x = \frac{g}{n=1} + 2(-1)^n \quad g_{inn}(x) = x$ $put \quad DC = TT/2$ $\frac{17}{12} = \frac{5^{\circ} - 9 - (-1)^{\circ} 8innT1/2}{12}$ $\frac{\pi}{2} = \frac{(-2)(-1)(1) + (-2)(-1)^2 \sin 2\pi}{2} + \frac{(-2)(-1)^3 \sin 3\pi}{2} + \frac{(-2)(-1)^4 \sin 4\pi}{2}$ C-2)(-1)5 sin5 T2 + ... $= 2 + (-1)(0) + (-2)(-1)(-1) + (-2) \times 0$ $+ (-2)(-1) \times 1 + \cdots + \cdots$ 13 2 = (x+119) + = 2 + 0 + 2 + 0 + 2 = 3 = 5 $\pi_{1/2} = \partial \left(1 - \frac{1}{3} + \frac{1}{5} + \cdots \right)$ D 0 0 0 36 (E-17) TJ 8 0

* $f(x) = (\pi - x)^2$ in $0 < x < 2\pi$, 8.7 $f(DL) = \frac{\pi^2}{12} + \frac{\xi}{n=1} \frac{\cos n^2}{n^2}$ hence deduce that O T = 1 + 1 + 1 + 1 = + $\boxed{\mathcal{D}} \frac{\pi^2}{1^2} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{$ $0 \frac{7^2}{8} = 1 + 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{7$ Soin' The fourier Serie OF period 200 in given by 00 P(x) = 00 + 5 ancosnx + 5 bnSinnx -0 P(x) = 2 + n=1 n=1 congider $f(x) = (\pi - \mathcal{Z})^2$ $f(2\pi - x) = (\pi - (2\pi - x))^2$ $= \left(\frac{-\pi + x}{2}\right)^{2}$ $= \left(-\frac{\pi - x}{2}\right) - \frac{\pi}{2}$ $=(\pi-\chi)^2$ $f(2\pi - x) = f(x)$ fix) ig even function bn=0 π $ao = 2/\pi \int f(n) dx$

SURYA Gold Date_____Page____ $a_0 = 2\pi \int \frac{t^2}{x - dt} \quad put \pi - x = t$ ロウズ -dpc=dt $a_0 = 2 \int_0^T \frac{f^2}{4} dt \qquad dx = -dt$ $= \frac{2}{11} \times \frac{t^3}{12} \int_0^{11}$ $\mathcal{X}=\pi$ t=0 $= \frac{2}{\pi} \times \frac{\pi^{3}}{12} \qquad \text{ ff } Q_{0} = \frac{2}{2}\pi \left[\frac{(\pi - 2)^{3}}{4x^{-3}} \right]_{0}^{\pi}$ $= \frac{2}{11} \left[\frac{1}{-12} \left(0 - (\pi)^{3} \right) \right]$ q = T/x - 12 x - 17 x - 17 x - 17 x - 12 $an = 2/\pi \int_{\pi}^{\pi} f(x) \cos nx \, dx \qquad q = \frac{\pi}{16}$ $=\frac{2}{4\pi}\int_{0}^{\pi} (\pi-x)^{2} cognx dx$ $\frac{2}{\sqrt{\mu}}\int_{0}^{\pi} (\pi - 2c)^{2} \cos nz dz$ APPly Bernoullis rule $\frac{Q_{n}=1}{a^{T}} \frac{(T-x)^{2} sinnx}{n} - 2(T-x)(-1)(-cosnx)}{n^{2}}$ + 2(-1)(-1)(-1 × Sinnx) TI $\frac{1}{2\pi} \begin{bmatrix} (\pi-\chi)^2 \sin n\chi & -2(\pi-\chi)\cos n\chi & -\sin n\chi \\ n & n^2 & n^3 \end{bmatrix}$ SINNT = 0 = Sino $=\frac{1}{2\pi}\left[-2\left(\pi-2\right)\cos(2\pi)\right]$

 $= \frac{1}{2\pi} \left[-\frac{2(\pi - \pi)}{n^2} \frac{\cos(\pi - \sigma)}{\cos(\pi - \sigma)} + \frac{2(\pi - \sigma)}{n^2} \frac{\cos(\sigma)}{n^2} \right]$ $= \frac{1}{2\pi} \int \frac{2\pi}{n^2} \frac{1}{n^2} \int \frac{1}{n^2} \frac{1}{n^2} \frac{1}{n^2} \int \frac{1}{n^2} \frac{1}{n^2} \int \frac{1}{n^2} \frac{1}{n^2} \frac{1}{n^2} \int \frac{1}{n^2} \frac{1}{n^2} \int \frac{1}{n^2} \frac{1}{n^2} \int \frac{1}{n^2} \frac{1}{n^2} \frac{1}{n^2} \frac{1}{n^2} \int \frac{1}{n^2} \frac{1}{n$ 12 20 $a_{\eta} = \frac{1}{n^2}$ Ett. X put ao, an, bn in () $\frac{(\pi - 2c)^2}{(2c)^2} = \frac{\pi^2}{12} + \frac{5}{n=1} \frac{\cos nx}{n^2} - \frac{1}{(2c)^2}$ To deduce given series put 2=0 $T_{1}^{2} = T_{12}^{2} + \frac{5}{12} \frac{1}{12} \frac{1$ $\frac{1}{12} - \frac{1}{12} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{3$ $\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}$ put x=TT in (#) $0 = \frac{1}{12} + \frac{5}{n=1} + \frac{1}{n^2}$ $\frac{-11^{2}}{12} = \frac{5}{12} \frac{(-1)^{2}}{12}$

SURYA Gold Date____ Fage $-\frac{\pi}{12} = -\frac{1}{1^2} + \frac{(+)^2}{2^2} + \frac{(+)^3}{3^2} + \cdots$ -11² 12 12 $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2}$ Bergoullin aule add (E ($\frac{3\pi^2}{12} = 2\left(\frac{1}{12}\right) + 2\left(\frac{1}{3^2}\right) + 2\left(\frac{1}{$ 2 311² 12 2 311 24 12 32 TH/8 1 32 + 1/12 + 52+

Fourier Series of appitary pould A function f(x) need not always be defined in the interval of length 21T only. when the length of the interval is other than 21T we shall denote it by Jul. A general interval of dength 2d be (c, c+2L) Here it is important to note that the sine & cosine functions of the form Sin(TIZ) and COS(TIZ) are periodic functions of period ge Let $f(z) = Sin \pi z$ F(x+gd) = Sin(TT(x+gd)) $= \sin\left(\frac{\pi 2}{4} + 2\pi\right)$ 1/29 $= Sin \left(2T + \pi x\right)$ F(x+2d) = F(x) $III^{14} = G(x+2d) = G(x)$ hence fourier snies of period 2d is $p(x) = \frac{\alpha_0}{\vartheta} + \frac{\varepsilon}{\rho=1} \frac{\alpha_0 \cos\left(\frac{n\pi x}{\vartheta}\right) + \varepsilon}{\frac{\varepsilon}{\vartheta} + \frac{\varepsilon}{\rho=1}} \frac{\alpha_0 \cos\left(\frac{n\pi x}{\vartheta}\right)}{\frac{\varepsilon}{\rho=1}} + \frac{\varepsilon}{\rho=1} \frac{\varepsilon}{\rho=1}$ Note: If the given function is neither odd nor even function them fourier Co-efficients are ct2d $bn = \frac{y_2}{f(x)} \frac{f(x) \sin(n\pi x)}{dx} dx$

PAGE NO. I STAD aries Somes of allingang leucod cuseO: If fairs an even function f(x) = f(x) = f(x) = f(x) $f(\partial e - x) = f(x)$ $a_0 = \frac{2}{d} \int_0^d f(x) dx$ I stear it is important $an = \frac{2}{4} \int_{0}^{4} f(x) \cos n\pi x \, dx$ Ecostara 3 bn=0 peried Qu Cale @ If f(a) is an odd function f(-x) = -f(x)f(2d-x)=-f(x)1 5.11/11:2. $a_0=0$ $a_n=0$ fl fcz) Sin nTZ dz bn= 2 9 \$ (2724) = \$ (20) NOTE: In every problem equating given problems interval to 22 O obtain the fourier Series to represent $f(x) = x - x^2 \quad in \quad -1 < x < 1$ Soiⁿo Here period φ f(x) = 1 - (-1) = 22843 $\mathcal{J}_{\mathcal{L}} = \mathcal{R}$ xp (2.22) 015 (23) 1 2/2 00

Fourier Servier of f(x) having period 2 is given by $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{2} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{2}$ put l=1 $f(x) = \frac{a_0}{9} + \frac{5}{2} \frac{c_0 8 n \pi x}{p_{=1}} + \frac{5}{2} \frac{b_0 S n \pi x}{p_{=1}} + \frac{5}{2} \frac{b_0 S n \pi x}{p_{=1}} = 0$ Now we shall cher the nature of the function y even or odd $f(x) = x - x^2$ $f(-x) = -x - (-x)^2$ $f(-x) = -x - x^2$ fEx) y not equal to f(x) or -f(x) i.e cohich is neither even nor odd function So, we have to find fourier co-efficienty C+2d $a_{o} = \frac{1}{d} \int f(x) dx \quad a_{n} = \frac{1}{d} \int f(x) \cos(n\pi x) dx$ bn = 1 c+2d $e \left(\frac{c+2d}{p(x)} \sin\left(\frac{p(x)}{x}\right) dx \right)$ co.K.T [d=1] df function $ao = <math>\int_{1}^{1} (x - x^2) dx$ $\begin{bmatrix} 2^2 & 2^3 \\ 8 & 3 \end{bmatrix}$ 1 1 1 1 1 1 1 $=(\frac{1}{2}-\frac{1}{3})-(\frac{1}{2}-\frac{(-1)}{3})$ = 16 - (12+3)

Fourier Search of fras Zuring V 200 6 given by = -4 an coshrz +5 a0= -2/3 1= 20 Put Ct2ll f(x) cos not dx $a_{\eta} = \frac{1}{u}$ (x) = (x) 110 01 natege NOW WE Shall CHER The b(DC-22) COSNTZ dznadoruj (-x) = -xBernoullis rule APPly (2c-22) SINNIT 2 - (1-22) X+1 x-COSNIT 2 (X) Traphich is nettraen even nTT 10 $(0-2) \times -1 \times 3100 \pi^2$ ounter co-attach + (1-2x) CO80 TT 2C n2 TT2 (x-22)810 NTT Sinniz (100.2) 1313 SinnTI =0 -1 0 1201 1-200) CO8NT2 シ D2172 50 $\left(\frac{GI}{n^2 \pi^2} \right)$ 3 CO 8 NTT (-1) Nº TT 2 5 - COBNT -3COSNT n2T2 n2T2 2 .

FAGE NO. $= - u cogn \pi$ $= -u (-1)^{n}$ $= -u (-1)^{n}$ $= -u (-1)^{n}$ $= -u (-1) (-1)^{n}$ $= -u (-1)^{n} (-1)^{n}$ $= -u (-1)^{n} (-1)^{n}$ $= -u (-1)^{n} (-1)^{n}$ $= -u (-1)^{n} (-1)^{n}$ (H) & -737.3 no $an = \frac{u(-1)^{n+1}}{n^2 \pi^2} //$ c + 2d $bn = \int f(x) Sinn\pi x dx$ C $bn = \int \int (x - x^2) SinnTx dx$ Apply Berroulli's rule $(x-x^2) \times -\cos n\pi x - (1-2x) \times -1 \times \sin n\pi x$ $+(0-2) \times -1 \times - \cos n\pi 2$ $n^2\pi^2 \qquad n\pi$ $\frac{-(x-x^{2})\cos n\pi x}{n\pi} + \frac{(1-2x)\sin n\pi x}{n\pi^{2}} - \frac{2\cos n\pi x}{n^{3}\pi^{3}}$ $\frac{\cos n\pi}{1} + \frac{\cos n\pi x}{n^{3}\pi^{3}} - \frac{\cos n\pi x}{n^{3}\pi^{3}}$ $-(x-x^{2})\cos 8n\pi x - 2\cos n\pi 2c$ $n\pi n^{3}\pi^{3}$ -1 $\left[-(1-1)\cos 8n\pi - 2\cos 8n\pi - 1 - (-1-1)\cos 8n\pi (-1) - (-1-1)\cos 8n\pi (-1)) - (-1-1)\cos 8n\pi (-1)) - (-1-1)\cos 8n\pi (-1)) - (-1)\cos 8n\pi (-1)) - (-1)) - (-1)\cos 8n\pi (-1)) -$ 1 upper limit D

PAGE NO. DATE $) - 2(-1)^{n}$ $1 n^{3} \pi^{3}$ -X-2 COSNIT - 2 WONT n³П³ nT -2(-1)7 8(-1)7 nπ -2(-1)7 nit 2 X-1 X (-1) " 1+(1-) nT nen 11 2.84 1 2 (-1)'(-1) xh 210012 (x) $b_n = \frac{2(-1)}{n_{\text{FT}}} \frac{1}{n_{\text{FT}}}$ 12.2 Apply Berroulli's Sumput Cio, an, bonin equation () focuries perio hence required is given by + 5 4C-D + 5 4C-D f (x) = 1 - 2/3 COBNITIC D=1 VEUSO. S a C-D SINNIT X nA 5 on Thanie n=1 $f(x) = -\frac{1}{3} + \frac{4}{\pi^2} \frac{5}{n=1} \frac{1}{\pi^2} \frac{1}{\pi^2} \frac{1}{n=1} \frac{1}{\pi^2}$ $\frac{2}{\pi} \frac{5}{2} \frac{(-D^{n+1}s)nn\pi x}{(-D^{n+1}s)nn\pi x}$ (1-) 70800 (1-1-) -? -TTE. (1-) TO BODE 13 11 1252 Lepar hard

(2) obtain the fourier series of f(2) = 12) In (-d, e) hence show that 1 1 1 1 = 1 12 32 52 8 Sono The Period of f(x) = d-(-d) = Qd and fourier Series of period Dd y given by $f(z) = \frac{a_0}{2} + \frac{\varepsilon}{2} \frac{a_0 \cos n\pi z}{2} + \frac{\varepsilon}{2} \frac{b_0 \sin n\pi z}{2} = 0$ we shall check f(x)=1x1 y even or odd function f(-x) = (1 - 2c) = |x| = f(x)hence f(x) = f(x) = f(x) $b_{n=0}$ $a_0 = 2 \int^d f(x) dx$ $\frac{\partial}{\partial \partial x} = \frac{\partial}{\partial x} \left[\frac{x^2}{2} \right]_{0}^{2}$ nanz $\frac{do=2}{d}\int^{d} x dx$ = 2ul 12912 = & x d² a = il & genes serves y fine a $an = \frac{2}{d} \int_{0}^{d} \frac{f(x)cosn\pi x}{dx} dx$ and the seduce the garages $= \frac{2}{2} \int \frac{x \cos n\pi x}{\sqrt{2}} dx$

PAGE NO. Apply Bernoullis orule in (-1, 1) hence show that $a_n = \frac{2}{d}$ 2 SINNTZ _ (1) x 1_ X - CO8 NT 2 Donno DIT l NTT R cl fourness DI 2 SINNER e an = 2 CO 801720 cl le 1000 120 n2 112 ut it bbo Check fale 1x1 & even an BINNT= 0 = SINO + (-x)=: 1 201 = 1x1 = an= 2 COSULTS ex In mul D 0 2 1252 COSNT & - COS(0) d = 2l n2112 COBNT -1 = 2d [C-D? = - 2 [1-1-D] n² []² [] Required fourier series is gruen by $f(x) = \frac{l}{2} + \frac{5}{n=1} - \frac{2}{n^2 \pi^2}$ (1-1-1) COSNTE To deduce the series put x=0 $\omega \cdot \kappa \cdot \tau \quad f(x) = x$ f(0) = 0

 $0 = d_{1} + \frac{5}{2} - 2d = \frac{21 - (-1)^{n}}{2000} \frac{1}{2000}$ $-d = -2d \sum_{n^2} \frac{1}{2} \frac{1}{2} \frac{1}{2} - (-1)^n \frac{1}{2} (1)$ $(1 - (-1)^n) = \int 1 - (+1) = 0$ when n is even 1 - (-1) = 2 when n is odd $\frac{d}{\partial} = \frac{f}{\pi^2} \frac{d}{p=1,3,5} \frac{f}{p^2} \times 2$ 7700 $\frac{\pi^2}{H} = 2 \frac{5}{n^2} \frac{1}{n^2}$ - Bothsidy by 2 $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}$ 3 Obtain the fourier Series for the function $f(x) = \int \frac{1+4x}{3} \frac{in -3}{2} \frac{2x \le 0}{2}$ $\int \frac{1-4x}{3} \frac{in -3}{2} \frac{2x \le 0}{2}$ hence deduce that $\pi^2 = \frac{1}{12} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{$ f(x) 18 defined in the interval (-3/2, 3/2) Solop : period of f(x) = 3/2 - (-3/2) = 3 2l = 3 or l = 3/2we shall check f(x) for even or odd nature x - 10 x 2

PAGE NO. DATE p(2)= 1+ H2C be- 3+ 2= 3 Th 1=0 $f(-x) = 1 - \frac{ux}{3}$ f(-x) = f(x) f(-x) = f(x) (+) - 1 = (-(-) - 1)31 EDED The fourier Series having period 3 is (01) $p(x) = \frac{a_0}{2} + \frac{\sum_{n=1}^{\infty} a_n \cos n\pi x}{\sum_{k=1}^{\infty} e_{k}} + \frac{\sum_{n=1}^{\infty} \cos n\pi x}{\sum_{k=1}^{\infty} e_{k}}$ 00 / put d = 9 $= \frac{a_0}{2}$ $= \frac{a_0}{2} + \frac{5}{2} a_1 \cos n\pi 2 + \frac{5}{2} \sin \theta \sin n\pi 2$ $= \frac{a_0}{2} + \frac{5}{n=1} \frac{a_1}{3/2} + \frac{3}{2}$ Obtain the fourier heavy for the food on $a_{o} = 2 \int f(x) dx \qquad a_{n} = 2 \int f(x) \cos n\pi x dx$ J= 3/2 $= \frac{3}{2} \int \frac{f(x) dx}{3/2}$ 4/3 (1-ux) dx $\frac{\frac{3}{2}}{\frac{3}{3}} = \frac{\frac{3}{2}}{\frac{3}{2}}$

PAGE NC 2 3 5.13% D 2 2 3 21211 02/3 3/2 9 43 42 9 43 3/2 6 COBDI -9 Q. 43 9 210 6 NT18 =0 a 4 an= (x) cos nT2 dx 24 01 Jo 352 3/2 COSNTZ dx 2 3/2 1 - 42 1 3/2 3 10 3/2 2nTX dx C08 ux 3 43 > quie Bernoullis Apply 为 2012 = 4 3 2017年 - 42 COL SIN 3 2011 2017 3 2m 3 0 COSENTR 43) Sin (20172) 43 -ux/3 3 3 2nn 2017/3 D nin

0 PAGE NO. DATE Cos ur Sin 11702 2 2017 3 H - 4(0) Sin 43 9 CO, 0 un'n 2 0 3 2 COBNTI Xq 4 Cuslo) + 3 43 - 3 17202 $+ 3 \times \pi^2 n^2$ COSNT (x) (0) PD - COBNTI 10 35202 $\frac{4}{3\pi^2n^2}$ SU 3.05 H 13 Yota 4 here 1- (-1) 80 Direct 12n2 Bernoullis apply

PAGE NO They required fourier server is given by ie put ao, an, bn in O $0 + \frac{\xi}{2} \frac{8}{n^{2}} \frac{\cos(n\pi x)}{3/2} + 0$ $n = 18 - \pi^{2}n^{2}$ f(x)= $f(x) = 1 - \frac{ux}{3}$ $1 - \frac{ux}{3} - \frac{8}{\pi^2} \frac{5}{n = 1,3} \frac{1}{n^2} \frac{\cos(2n\pi x)}{3}$ put x=0 $1 = \frac{8}{\pi^2} \sum_{D=1,3,5}^{10} \frac{1}{D^2} \cos(0)$ $\frac{1 = 8}{\pi^2} = \frac{5}{n = 1, 3, 5} \frac{1}{2} \frac{1}{1 = 1, 3, 5} = \frac{5}{1} \frac{1}{1 = 1, 3, 5} = \frac{5}{1 = 1, 3, 5} \frac{1}{1 = 1, 5} \frac$ do $a_n = \frac{4}{\pi^2 n^2} (1 - (-1)^n)$ put ao, an, bn in O $f(x) = \frac{5}{D=1} \frac{4}{\pi^2 n^2} (1 - (-1)^2)$ $\frac{1-(-1)^{n}}{1-(-1)} = \int \frac{1-(+1)}{2} = 0 \quad \text{when } n \quad i g \text{ even}$ $\frac{1-(-1)}{1-(-1)} = 2 \quad \text{when } n \quad i g \text{ odd}$ $\frac{p(x) = 1 - \frac{ux}{3}}{1 - \frac{ux}{3}} = \frac{5}{n = 1,3,5} - \frac{4}{n^2}$ 4, ×2 $1 = \frac{8}{12} \frac{2}{5} \frac{1}{12} \frac{1}{5} \frac{1}{12} \frac$ 1/2 +

PAGE NO. DATE $\frac{7}{2} \frac{f(x)}{f(x)} = \begin{cases} \vartheta - x & \text{in } 0 \leq x \leq 4, \\ 2c - 6 & \text{in } H \leq x \leq 8, \\ 0 & 0 & 0 & 0 \end{cases}$ Express fix) by a fourier series and hence deduce that $\pi^2 = \frac{5}{8} \frac{1}{n=1} \frac{1}{(2n-1)^2}$ f(x) is defined in the interval (0,8)period of f(x) = 8 - 0 = .8Sono 21=8=2 mg J=4/1 put d=4 pur u = 1 purwe shall check fix) for even or odd nature (1-(4) f(x) = 2 - x0.0 (2u-x) = g - (2l - x)= 2-21 + x 67) \$ (x) = x-6 + (2.1-x)=21-x-= 2-2×4+2C = 2×4=x-6 = 2-8+20 = -6 + x= x - 6f(2d - 2c) = f(x)=8-6-2 (x) = f(x)

FAGE NO. P Bof 1 (X) ig even function cleanly bn=0 $a_0 = \frac{2}{\sqrt{e}} \int_0^d f(x) dx$ $=\frac{2}{4}\int_{0}^{4}(2-x)dx$ ad and $= \frac{1}{2} \left[\frac{2x - x^2}{2} \right]_{D}$ $= \frac{1}{8} \left[\frac{2 \times H - \frac{4^2}{2} - 0}{2} \right]$ = 1 [8-16/2) = 1/2 (8-8) (0) 200 8 2 2 $a_n = \frac{2}{\sqrt{2}} \int_0^d \frac{\varphi(x) \cos(n\pi x)}{\pi} dx$ $a_n = \frac{2}{4} \int_{0}^{4} (2-z) \cos(n\pi z) dx$, Apply Bimoulling $\frac{2}{4} \int_{0}^{4} (2-z) \cos(n\pi z) dx$ $= \frac{1}{2} \left[(2 - x) \sin(n\pi x) \right]^{-1} - (0 - 1)$ $-x - colp\pi x$ nr nT/4 DT autoritent (+ 1 × COX(NTT 2) N252 4 12 16 -1 x H6 8 CoshTx) 74 $= -\frac{8}{4\pi} \left[\cos(\frac{\pi \pi}{4}) - \cos(0) \right]$

PAGE NO. DATE / / $\frac{-8}{\pi^2 n^2} \cos n\pi - \cos n$ 1.16 + (X) is even $a_n = \frac{8}{\pi^2 n^2} \int 1 - (-1)^n 7 x b (n)$ 2 14 (2-x) dx put do, an, bn in O $f(x) = 0 + \frac{5}{n} \cdot \frac{8}{n^2 n^2} (1 - (-1)^n) \cos(n\pi x) + 0$ $n = 1 - \pi^2 n^2$ $2 - \chi = \frac{5}{n} \frac{8(1 - (-1)^n)}{n^2 n^2} \cos(n\pi x)$ $n = 1 - \pi^2 n^2$ $y = \frac{1}{n^2 n^2} - \frac{1}{n^2 n^2} + \frac{1}{n^2 n^2}$ $\frac{1-\hat{l}-r}{2} = \begin{cases} 0 & \text{othen } n & \text{if } uun \\ 2 & \text{othen } n & \text{if } 0 & \text{odd} \end{cases}$ put oc=0 $g = \frac{g}{\pi^2} = \frac{5}{n = 13.7^2} \frac{2.0000}{n = 13.7^2}$ $\frac{\pi^2}{8} + \frac{5}{n=1, 3, 5...}$ /n2 $\frac{\pi^{2}}{8} = \frac{1}{12} + \frac{1}{32} + \frac{1}{52} + \cdots$ 8-x) SIN(0123) equivalently $T_{f} = \frac{5}{5} \frac{1}{(2n-1)^2}$ HI. (xudras (0) 800 - (0) ROO (0)

obtain the fourier Serving for the function $f(x) = \int \pi x$ in $0 \le x \le 1$ $\pi(2-x)$ in $1 \le x \le 2$ S = 8.T the pourier Serving expandion of the function f(x) is $\pi - \frac{14}{12} \left(\frac{\cos \pi x}{12} + \frac{\cos 3\pi x}{3^2} + \frac{\cos 8\pi x}{3^2} + \frac{\cos 8\pi$ 3 Som f(x) ig defined in the interval (0,2) period of f(x) = 2-0 = 2 $we = \frac{1}{2} \frac{2}{2} \frac{1}{2} \frac{1}{2}$ = T (2 - (2u - x))= TT (2-21+I) (x) cosmix d TT 12-2+X f(x) ig even function f(x) - f(x)Fourier Series having period & is given by $f(x) = \frac{a_0}{2} + \frac{5}{2} a_1 c_0 (n\pi x) + \frac{5}{2} b_1 s_1 (n\pi x) +$ $d=1 \qquad 0 \qquad d=1 \qquad 0 \qquad f(x) = \frac{\alpha_0}{2} + \frac{5}{2} a_n \cos(n\pi x) + \frac{5}{2} b_n \sin(n\pi x)$

PAGE NO. DATE fix) ig even function clearly bn=0 fanchon an= 2/2 f fordx 1100 the function fix 90 $= 2 \int \pi x dx$ T the COOME 10% 19/02 $= 2 \cdot \pi \left[\frac{2c_{p}}{2} \right]_{p}$ 21=2 42-0) (= b = 21T two total eve shall check the natur $\frac{\partial \overline{\Pi}}{\partial t} = \overline{\Pi} (2 - 1)$ P1X) = 112C $(34-x) = \pi(34-x)$ and ab=TT 1=10 P (21-X) = TT (DEX) TE STA $\frac{1}{2} = \frac{2}{2} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{f(x) \cos n\pi x}{2} dx$ ((x -- (- - - [-e=1] T+I = 2 $\int f(x) \cos \pi x dx$ r4 ins in even fametion fist-x)-e(x) = 2 ('TX COQ NTOC de $\frac{1}{2} \frac{1}{2} \frac{1}$ 8 Given JON = 917 + (realog) up S + atai2a 10 = (x) 9 COSOTT = 211 n2112 a leha Enalars ug D + (STANDING TO T + (H) = 901 1 COJ nT $n^2 \overline{J}^2$ = 211 000 n2112

= 211 2 (connT-1) FAGENO 1= 2 (EU?-1) ming link $a_n = -2 (1 - (-1)^n)$ that in genera put ao, an, bn In O $f(x) = \pi + \frac{5}{2} - 2 (1 - (-1)^n) \cos \pi \pi x$ 10010 $(1-(-1)^n) = \int_{0}^{\infty} 2 \cosh(n) n i \eta e u e n$ $f(x) = \pi - 4 - 5 - 008 - 0.72$ $\frac{1}{2} \pi - 1,3,5... n^2$ (1,0)? CULOY $f(x) = \frac{\pi}{2} - \frac{4}{7} \begin{bmatrix} \cos \pi x & \cos 3\pi x \\ \cos 2 & \pi \end{bmatrix} \begin{bmatrix} \cos \pi x & \cos 3\pi x \\ \cos 2 & \sin x \end{bmatrix} \begin{bmatrix} \cos 3\pi x & \cos 3\pi x \\ \cos 2 & \sin x \end{bmatrix}$ tel suffer put x=0 most they ayked Series f(x) = TT x : f(0) = 0 Place Legal Bull $0 = \frac{\pi}{3} - \frac{4}{11} \begin{bmatrix} \cos(0) + \cos(0) + \cos(0) \\ 1^2 + \frac{3^2}{3^2} + \frac{5^2}{5^2} \end{bmatrix}$ PRIJE REMED $\frac{1}{9} - \frac{1}{11} + \frac{1}{12} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{5^2$ The = 1/2 + 1/2 + 1/2 + p. 6. 7. 9 obtain the fourier Series for 6) the function $f(x) = 2x - xc^2$ in $0 \le x \le 2$ $\frac{1}{3010} = 1, \quad bn = 0 \quad \therefore even function$ Replace $x \quad by \quad al - x$ $f(x) = ax - x^2 = a_3 + \sum_{n=1}^{\infty} -\frac{4}{n^n} \cos(n\pi x)$ 00 400 811

(1 TIPEDO) AND MANDAN Half Bronge Fourier Series In an interval of dength 2d, we have Seen that in general a periodic function of x will have fourier expansion containing cosine terms & give terms. many times it becomes necessary to have the expanyion confaining only cosine terms or give terms to achieve this the function must be defined in the interval of the form (0,0) G(0,TT) which ig to the regarded of half the interval we then extend the definition to other half in Such as manner that the function becomes even or odd. Thig will repart in cogine genie only or Sine fouig only $C_{ade}(\mathcal{O}): T_{n} + he interval (0, d)$ $C_{o}Bine Berie B$ $f(\mathcal{H}) = a_{o} + \frac{\mathcal{B}}{2} a_{n} C_{o}(n\pi x) - 0$ $R_{o}(n) = a_{o} + \frac{\mathcal{B}}{2} a_{n} C_{o}(n\pi x) - 0$ Fourster co-efficient a = 2 (" f cx) dx $\begin{array}{l}
\Omega_n = 2 \int_{\mathcal{U}} \int_{0}^{d} f(x) \cos\left(\frac{n\pi x}{a}\right) dx \\
\int_{\mathcal{U}} \int_{0} \int_{0} \frac{1}{a} \int_{0}^{d} f(x) \cos\left(\frac{n\pi x}{a}\right) dx
\end{array}$ DIARD called; In the interval (0, cl) Sine series p $f(x) = \frac{5}{2} bn Sin(\frac{n\pi x}{2}) - (2)$ (XEALBOD , W- 4 5+ 6= - x6= (1) \$

Stund cound abund free verses seemed many date period, equate to I ABRO, OCACHO - 38 CON broger O forming coupt by = 2 ($f(x) Sin(n\pi x) dx$ Componing the given interior Seine cale 3; In the interval (0, TT) of at 100 Cogine Series $p(x) = a_0 + \sum_{n=1}^{\infty} a_n c_{osn} x - 3$ $Q_0 = 2 \int_{T}^{T} f(x) dx$ $a_n = \frac{2}{\pi} \int_{-\infty}^{\pi} f(x) \cos(nx) dx$ Contraction 2 10 Cale@' In the Interval (0, T) Sine Servie & g (x)= E bn Sin (nex) (P) anythe and a $b_n = \frac{2}{\pi} \int_{-\pi}^{\pi} f(x) S(n(nx)) dx$ O and 3 age called cosine half range Fournier Series, because it contains only cosine terms D & D age Called Sine half range Fourier Series becaye it Contains Only Sint terms problems and a constant (areigning) - (a) - Cosning 1372

NOTE: In half range fourier Series to caludate period, equatent to I Expand f(x)= 2x-1 og a cogne half range fourier gerieß in 0<x<1 0 Seine Companing the given interval (0,1) with (0, d) we have d=1 The given function having period f(x) = 1 - 1 - 0 = 1 f(x) = 1 - 1 = 109) Gosine half range fourier Service is given by given by $f(x) = \frac{a_0}{2} + \frac{5}{2} ancos(n\pi x)$ $a_0 = \frac{2}{2} \int_0^d f(x) dx$ $a_n = \frac{2}{2} \int_0^d f(x) \cos(n\pi x) dx$ = 2 / (2)(-1) dix $= \partial \left[\partial x^{2} - x \right]$ $\frac{1}{2} \frac{1}{2} \frac{1}$ Courses for estas to (1-1) & = a a ane carred fine (0=00) Lounier geneg because it contains $an = \frac{2}{2} \int_{-\infty}^{u} f(x) \cos n\pi x \, dx$

 $= \frac{9}{9} \left[\frac{9}{2} \frac{\cos n\pi x}{n^2 \pi^2} \right]$ $= \frac{H}{n^{2} \pi^{2}} \left(\frac{\cos n \pi(x) - \cos (0)}{\cos (0)} \right)^{2}$ $= \frac{4}{\pi^2 n^2} \left(\cos n\pi - 1 \right)$ $= \frac{4}{120^2} ((-1)^n - 1)$ $a_{n} = -\frac{y}{\pi^{2}n^{2}} \left(1 - (-1)^{n}\right)$. cogine half range Fourier Seriel is $Q_{(n)H} \neq (x) = 5 - 4 (1 - (-1))^n cogn \pi x - 2 = 5 - 4 (1 - (-1))^n co$ De Sot the Sine half range Seriy for the function $f(x) = dx - x^2$ in 0 < x < 1 $\frac{ig}{\pi^3} \frac{gu^2}{n=0} \frac{gu}{(2n+1)^3} \frac{g(2n+1)}{(u)} \frac{\pi x}{(u)}$ <u>Cono</u> The Sine half range pourier Series of f(x) in (o, d) ig given by $f(x) = \frac{5}{5} \frac{b_n s_n n\pi x}{c}$ $bn = \frac{2}{\sqrt{e}} \int f(x) \sin n\pi x dx$ = 2 (d (dx-x2) SINNTIC dx de la la Apply Bernoulli's orule ed an entered

 $\frac{p_{a}}{p_{a}} \frac{p_{a}}{p_{a}} \frac{p_{a}}{p_{$ $= \frac{8u^2}{\pi^3} \frac{0}{n=1,3,5} \frac{1}{n^3} \frac{\sin n\pi^2}{u^2}$ But 1, 3, 5 ... are odd numbers o reprepented in general of (2n+1) where n=0, 1, 2, 3 : we have $f(x) = \frac{8u^2}{\pi^3} \frac{5}{n=0} \frac{1}{(2n+1)^3} \frac{5(n+1)}{u} \frac{5}{\pi^2}$ = -2/2 2 COS NT 2 1313 Converses (3) obtain the Sine half range fourier Seriy of $f(x) = x^2$ in 0 < x < TT-4 × d³ [cop n T 2] Soing The sine half range fourner series of the function f(x) in (o,π) is $= -4 u^{2} \left[\cos n\pi - \cos n\theta \right]$ $= -uu^{2} [(-1)^{n} - 1]$ $f(x) = \sum_{n=1}^{\infty} b_n \sin nx \text{ cohere } b_n = \partial_n \int_{x} f(x) \sin nx dx$ give half donge $bn = \frac{\partial}{\partial t} \int_{0}^{\pi} x^{2} Sinnx \, dx$ $= \frac{\mu u^2}{n^3 \pi^3} \left(1 - (-1)^n \right)$ The Sine half range fourier Service if given by to $f(1) = \frac{4u^2}{\pi^3} \frac{5}{n=1} \frac{1}{n^3} \frac{1-(-1)^n}{n} \frac{\sin n\pi x}{2}$ Apply Bernoullis rule. $= \frac{2}{n} \frac{x^2 x - \cos nx}{n} - \frac{(2x)x - \sin nx}{n^2} + \frac{1}{n^3} + \frac{1}{n^3}$ $= \frac{1}{2\pi} \left[-\frac{x^2 \cos nx}{n} + \frac{3x \sin nx}{n^2} + \frac{3\cos nx}{n^3} \right]^{T}$ 1-(-1) = { 1-(+1) = 0 when ny even 1-1-12=2 when n y odd $f(x) = \frac{4u^2}{\pi^3} \frac{\int_{n=1,3}^{\infty} \frac{2}{5 \cdots n^3} \frac{2}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1$ $z = \frac{2}{n} \left[\left(\frac{-\pi}{n} \cos n\pi \right) + \frac{2}{n} \cos n\pi \right) - \left(0 + \frac{2}{n} \cos n\pi \right) - \left(0 + \frac{2}{n} \cos n\pi \right) \right]$ $= \partial_{tr} \left[-\pi^{2} \operatorname{Cogn} \tau + 2 \frac{\cos n\pi}{n^{3}} - \partial_{n^{3}} \right]$

PAGENO, $= \frac{2}{n} \left[-\frac{1}{n} \left(-\frac{1}{n} \right)^{n} + \frac{2}{n} \left(\frac{1}{n} \right)^{n} + \frac{2}{n} \left(\frac{1}{n} \right)^{n} \right]$ $= \frac{2}{11} \left[-\frac{1}{11} \left(-\frac{1}{11} \right)^{n} + \frac{2}{13} \left(\frac{1}{12} \right)^{n} + \frac{2}{13} \left(\frac{1}{12} \right)^{n} - \frac{1}{12} \right]$ $2_{\pi} \int \pi^2 x f (-2)^{n} + -2 (1-(-0)^{n})$ $bn = \frac{2}{10} \left[\frac{\pi}{10} \left(-1 \right)^{n+1} - \frac{2}{20} \left(1 - (-1)^2 \right) \right]$ required half range fourier fire $(2) = \sum_{n=1}^{\infty} \frac{2}{n} \left[\frac{\pi}{n} (-1)^{n+1} - \frac{2}{n} (1 - (-1)^n) \right] sinnz$ (4) obtain the sine half range Service of notion f(x) in (0, 11) $f(x) = \begin{cases} y_u - x & \text{in } 0 < x < Y_2 \\ x - 3 & \text{in } y < x < 1 \end{cases}$ Inal2(C); fix) is defined in the interval (0,1) comparing with half range (0, 2) . l=1 Son . Sine half range series is given by f(x) = 5 bnSin($p\pi x$) where n=10.8 $bn = \frac{2}{3} \int_{0}^{d} f(x) Sinn \pi x dx$ $bn = 2 \int f(x) \sin n\pi x \, dx$ $bn = 2 \int_{0}^{\sqrt{2}} f(b) sinn \pi x dx + \int f(x) sinn \pi x dx$ TO BOSTATT + 3 COSTAT 60

(1-x) SIMMIX dx $\left(\frac{1}{u}-x\right) \times -\frac{\cos n\pi z}{n\pi} = (-1) \times -\frac{\sin n\pi z}{n\pi}$ - (I)X-X SIDDITZ (x-3/4) x-cosnTX 12 = 8 - (1/4 ×) CONDAX - SIDDAZ $\left[\left(\frac{z-3}{4}\right)\left(\frac{-\cos \sin \pi z}{n\pi}\right)+\frac{3\sin n\pi z}{n^{2}\pi^{2}}\right]$ $-\left(\chi_{\mu}-\chi_{2}\right)\frac{c_{0}g_{D\Pi}\left(\chi_{2}\right)}{n\pi}-\frac{g_{1}g_{1}}{n^{2}}$ $\left(-(Y_{u}-0)\cos(0)-\sin(0)\right)$ $n\pi$ $n^{2}\pi^{2}$ $3(n)(-\cos(n\pi))$ $(1-3/4)(-\cos n\pi) + \sin (\pi)$ $(\frac{1}{2}-\frac{3}{4})(\frac{-\cos n\pi(1)}{n\pi}) + \frac{\sin n\pi(k_2)}{n^2\pi^2}$ $= 2 \left(-\frac{1}{n\pi} \left(-\frac{1}{4} \right) \cos \frac{n\pi}{2} - \frac{1}{n^{2}\pi^{2}} \sin \frac{n\pi}{2} + \frac{1}{4} \times \frac{1}{n\pi} \right)$ $\frac{1}{4} - \frac{1}{4} - \frac{1}$ $\frac{1}{400} \left(\frac{\cos n\pi}{2} + 1 + - (-1)^n - \frac{\cos n\pi}{2} \right)$ $\begin{cases} -\frac{2}{10^{2} \pi} \frac{\sin n\pi}{2} \\ \frac{1}{10^{11}} \left(1 - (-1)^{7} \right) - \frac{2}{2} \frac{\sin n\pi}{2} \\ \frac{1}{10^{11}} \left(1 - (-1)^{7} \right) - \frac{2}{10^{11}} \frac{\sin n\pi}{2} \end{cases}$

FAGE NO. Sine half range Senies is given by $\frac{\psi}{\psi(x) = \sum_{n=1}^{\infty} 2\int_{-\infty}^{\infty} \frac{1}{\psi(n\pi)} (1 - (-1)^n) - 2 \sin(n\pi) \frac{1}{\sqrt{2}} \sin(n\pi) \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}$ (3) Find the cosine half range Series of f(x) = xsinx in OxxLT. Deduce that $\frac{1}{1\cdot 3}$ $\frac{1}{3\cdot 5}$ $\frac{1}{5\cdot 7}$ = $\frac{1}{7}$ \frac 1+ 2 - 2 + 2 ... = TT Soin: cosine half range series of fix) in the half range (0, TT) y given by $f(x) = \frac{\alpha_0}{\beta} + \frac{\beta}{\beta} = \frac{\alpha_0 \cos \alpha x}{\beta} = 0$ $a_0 = \frac{2}{\pi} \int_{\pi}^{\pi} f(x) dx \qquad a_n = \frac{2}{\pi} \int_{\pi}^{\pi} f(x) \cos nx dx$ $\alpha_0 = 2 \int \infty \sin \infty dx$ $= \frac{2}{\pi} \left[2 (x - \cos 2 \alpha - \alpha) (-\sin \alpha)^{2} \right]$ $= \frac{2}{\pi} \left[-\pi \cos \pi + \sin \pi \right] - 0$ $= \frac{2}{\pi} x - \frac{1}{\pi} \cos 8\pi$ = $-\frac{2}{\pi} x (-1)$ $: \cos \pi = \cos^{3} \cos^{2} - 1$ ·· 008 TT = W\$180 =-1 a = 2/1

 $= \frac{2}{\pi} \int \frac{1}{2} \int \frac{\sin(x+nx) + \sin(x-nx)}{2} dx$ = $\frac{2}{\pi} \times \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \int_{-\infty}^{\infty}$ Sin((1-n)x)= Sin (-(n-1)x) = -Sin((n-1)x) $= \frac{1}{\pi} \int_{0}^{\pi} \frac{x \sum \sin(n + i) x}{1 + \sin(n - i) x} dx$ = 1 [J x Sin(n+1)xdx + J-x Sin(n-1)xdx T] Jo - 1 2x - cos(n+i)x - (i)(-i)(sin(n+i)x)(n+i) (n+i)(n+i)(n+i) $\frac{\int 2c x - co\beta(n-1)x}{(n-1)} - \frac{(1)x-1}{(n-1)} \times \frac{\sin(n-1)x}{(n-1)}$ $\frac{70}{n+1} + \frac{510(n+1)x}{(n+1)^2} + \frac{70}{(n-1)x}$ + $\frac{Sin(n-1)x}{(n-1)^2}$ Sin(n+1) T=0 = Sin(n-1) T , Sin0=0 adrand 177 $-\pi \cos(n+1)\pi + \pi \cos(n-1)\pi - 0 - 0$ (n+1) (n-1) T 10 10 400 x+1 [-cos(n+1) IT + cos(n-1) IT nti n-1 Thend

ND IP STALL $= + [-(-1)^{n+1} + (-1)^{n-1}]$ $= (-1)^{n} (-1)^{n+1} + (-1)^{n-1}$ $= \frac{(-1)^{n} \cdot (-1)^{-1} + \frac{(-1)^{n}}{n-1}}{1 + \frac{(-1)^{n}}{n-1}} = \frac{1}{\sqrt{a}}$ $= \frac{(-1)^{n}}{(-1)^{n}} = \frac{1}{\sqrt{n+1}} = \frac{(-1)^{n}}{(-1)^{n}} = \frac{1}{\sqrt{a}}$ $(1+\alpha) \leq (2-\beta) n (-) (1) - 2 \beta (+\alpha) = 2 \infty$ $(1+\alpha) + (n+1) (n+1) = (n+1)$ $p^{2} = (-1)^{n} \left[\frac{n-1}{n^{2}-1} - \frac{n}{n^{2}-1} \right]$ XCI (-- $\frac{2}{n^2-1} = \frac{(-1)^n (-2)}{n^2-1}$ $= \frac{2 \times (-1) (-1)^n}{n^2 - 1}$ $n = \frac{2(-1)}{n^{2}-1}$ $ahn = \frac{2(-1)}{n^{2}-1}$ we shall now find an $gouly = \frac{2}{n^{2}-1}$ when n=1, i.e to find a, $gouly = \frac{2}{n^{2}-1}$ $\frac{2}{n^{2}-1}$ $\frac{2}{n^{$

NISARGA PAGE NO. DATE $a_n = \frac{2}{\pi} \int \frac{\pi sinx \cos x}{x} dx$ 17-2 $= \frac{2}{\pi} \int_{0}^{\pi} \frac{x^{2}x^{2}x \sin x \cos x}{2} dx$ $= \frac{\partial}{\partial t} \int_{0}^{T} \frac{\chi \sin 2 \gamma c}{2} dx$ $\frac{1}{\pi} \begin{bmatrix} 2 \times -20,822 & -1)(-1) \times 10/22 \\ 2 & 2 \\ 2$ $(1) \times (1 - (1))(1)$ $= \frac{1}{\pi} \left[-\pi \cos 2\pi + 1 \sin 2\pi - 0 \right]$ 17-2 SIN211=0 $= \frac{1}{1} \times -\pi COB2\pi$ $Cr_{i} = -\frac{1}{2}$ Now eq D becomes $f(x) = \frac{a_0}{2} + \frac{a_0x}{2} + \frac{5}{2} a_n cosn x$ $= + \frac{1}{2} + (-\frac{1}{2}) \cos x + \frac{5}{2} \frac{2}{(-1)} \frac{n+1}{\cos nx}$ $f(x) = +1 - \frac{1}{2} \cos x + 2 \frac{5}{2} \frac{(-1)^{n+1}}{n-2} \cos nx$ put $x = \frac{\pi}{2} \quad f(x) = \frac{\pi}{2} \quad \sin \frac{\pi}{2} = \frac{\pi}{2} \\ x = \frac{\pi}{2}$

FAGE NO. DATE 0 = 2 [(0,8 17 (-1) + 1 3 + 18 11-2 2 1° 8 $\frac{1}{15} \frac{(-1)}{2} \frac{(-1)}{2}$ COBSE 28x Sinta COBEC das COST = + = COBST = COBST -... $Cop(3T/2) = 0 = cog 5T/2 \dots$ p12 x 1-100 - . 34200- x 20 $\frac{\pi - 2}{2 \times 2} = (-1)(-1) - 1 \times (1) + 3 = 15$ TT-2 - 10 - 1 4 1.3 3.5 multiplying by 2 & transpoping 1 on 00) RHS we get $\frac{T}{8} = \frac{1+2}{1\cdot 3} - \frac{2}{3\cdot 5}$ a + goxt 5 encienz $\frac{1}{2}\pi - x$ in $\frac{\pi}{2} \perp x < \pi$ 60,802 $\frac{\$ \cdot 7 \quad \textcircled{O} f(x) = 4}{\pi} \begin{cases} \sin x - \sin 3x \\ \cdot 3^2 + 5^2 \end{cases}$ $(i) f(x) = \frac{\pi}{4} - \frac{2}{\pi} \begin{cases} \cos^2 x + \cos^2 x \\ -\frac{2}{4} & \frac{2}{\pi} \end{cases}$ Find a Cosine Series for f(x)= $(x-1)^2$, $0 \le x \le 1$ dru: l=1 $f(x) = y_3 + y_3 = \sum_{n=1}^{\infty} y_n cosnax$ ()

PAGE NO. obtain half range Cosine Series for the function $f(x) = Sin(m\pi x)$ where (0, 0) a toe integer over the interval $\frac{con^{\circ}}{2} + \frac{c(x)}{2} = \frac{a_0}{2} + \frac{5}{n=1} + \frac{a_n cos}{2} = 0$ $Q = 2 \int^{d} f(x) dx \qquad Qn = 2 \int f(x) \cos n\pi x dx$ $a_0 = 2 \int Sin max dx$ $\frac{-2}{2} \begin{bmatrix} -\cos m\pi z \\ -\cos$ Q -2 x l COS (MTIZ) $\frac{1}{m\pi} = -\frac{2}{cos} \frac{cos}{m\pi} - \frac{cos}{cos}$ nu + Sinmi Signi mit COS = -2 [$(-1)^m - 1$] $c_{lo} = 2 (1 - (-1)^m)$ n+m $a_n = 2 \int_{\mathcal{U}} \frac{S_{in} m \pi z}{e} \frac{Cos n \pi z}{e} dz$ Ð $= \frac{2}{\sqrt{2}} \int_{0}^{2} \frac{\int Sin(m+n)\pi \chi}{2} \int_{0}^{2} \frac{Sin(m-n)\pi \chi}{2} \int_{0}^{2} \frac{J}{2} \int_{0}^{2} \frac$ dr n tra

FAGE NO. DATE 1 1 e $\frac{l}{(m+n)\pi} \times - \cos(m+n)\pi \times \frac{l}{(m+n)\pi} \times \frac{l}{(m$ 1.400 1 pro The cl $\frac{d}{m+n}\pi = \frac{d}{d} \frac{d}{d}$ the interved 0 e (m+n) T $\frac{(-l) \cos(0) - l}{(m+n)\pi} \cos(0) = \frac{(-l) \cos(0)}{(m-n)\pi}$ rd fixid x an= $\frac{-\cos(m+n)\pi}{(m+n)\pi} - \cos(m-n)\pi}{(m-n)\pi}$ and = & (m-n) TT a (m+n) 1 (m-n) TT 200 2 - COSMAZ 1x- CO8 (m+n) TT (m+n) 0- 100 Cos(m-n)11 ani2nd (m-n) Π mini S-COSMIT COSNIT - SIMMIT SINNIT -) m+n T $\int \cos m\pi \cos n\pi + \sin m\pi \sin n\pi$ mm $+\frac{1}{m+n}$ $+\frac{1}{m-n}$ SINMIT=O=SINNIT × COSMIT COSNIT -1 COMTICOSNIT mtn salkos shara m-h t mtn m-n 2010-10/015 $-COBMITCOBNIT <math>\begin{bmatrix} -1 \\ m+n \\ m-n \end{bmatrix}$ m-n Vala MI TICOLONI h(m-m)

PAGE NO. DATE $(-1)^{m}(-1)^{n}$ (m-n+m+q) $m^{2}+n^{2}$ M-A+m+y $(-1)^{\prime}(-1)^{\prime}(-1)^{\prime}(2m) + 2m$ $(m^{2}-n^{2}) + 2m$ $(m^{2}-n^{2}) + 2m$ $\frac{2m}{m^2 - n^2} \left(\frac{(-1)^n (-1)^n (-1)^n + 1}{(-1)^n (-1)^n + 1} \right)$ $a_n = \frac{2m}{r \tau (m^2 - n^2)} \begin{bmatrix} (-1)^{1+m+n} + 1 \end{bmatrix} \text{ where } m \neq n$ egn@ becomey $an = a \int Sinn \pi x cosn \pi x dx$ 2 SINNTZ COBNITZ dx (x" & + by 2) SINZX =2Sinx cogx rathcal analyging SinanTZ dx e Jo 0 + 1801,01 - CO82NTZ mild + mild 2nily COS2MTL - 60,510) = -1 2011 Juis 59 7. 10 COBENT - MECTODO 20mant Loca · : 0820TT =1 -1 (1-1) 2ntt (1-1) a when m=n and a star a= 0. private of y = f(x) having n TT egendigtant peint of x the interval DEXCON CON

forrig eqn @ becomes gang e Berie when m in is required cosine half to men in the is Eque M. al $f(x) = \frac{1}{m\pi} \begin{cases} 1 - (-1)^{m} \frac{1}{2} + \frac{5}{n} \frac{2m}{n} \int \frac{1 + (-1)^{m+n} - \frac{1}{2} \cos \frac{n\pi 2}{n}}{1 + (-1)^{n}} \int \frac{1 + (-1)^{m+n} - \frac{1}{2} \cos \frac{n\pi 2}{n}}{1 + (-1)^{n}} \int \frac{1 + (-1)^{m} \frac{1}{2} \cos \frac{n\pi 2}{n}}{1 + (-1)^{n}}$ man? man? Practical Harmonic Hnalysis Harmonic analysis is the process of finding the Constant term and first felo cosine and sine terms pm numerically The fourier Seriy of period a Det Fig $2\pi q$ a function y = f(ze) will of the form . Ben da $f(z) = \frac{\alpha_0}{2} + \frac{5}{n=1} \frac{\alpha_0 \cos 2n \cos 2}{n=1} + \frac{1}{n=1} \frac{1}{n=1}$ 5012 x° The fourier genies of practical andygig 4 $f(x) = a_0 + (a, \cos x + b, \sin x)$ Sono 1.0 + (a2 cogoc + b2 Singe) + ... + xen av in constant ferm 0 u5 3/2 (a, cogx+b, sinze) & (a2 cogoc + b2 simpe) 90 au fingt & Second hapmonics Y2 135 180 0 225 12 NOTE: Suppose we have a Bet of N 270 value of y=f(x) having period 21T 315 3/2 at equidigtant points go or in the interval OSXX 2TT or OX262TI TO+aly 8.0

If the value of y at 2 = 0 & 2 = 0 2TT are given out of thig interval we omit only 1 4 of them 1 108 0172 Fourier co-eff ao, an bon are ao= 2 59 an= 2 5 ycosnz 20102 545 bn = 2 5 by Sinnoc Dooblems Determine the Constant ferm and the a fight conne & One termy of fourier expansion of y from the following Seriy data x° 90 135 180 225 270 315 45 0 Y2 Y2 3/2 3/2 4 0 2 1 Solo Here the interval of 0° to 360° ic 0 ≤ x 2 2TT. we have to kind a; ai, b, requiry Summation of 4 4082, 45inz Thig x COSX YOSX Sin & YSINX o y t 0 10 00 2 2 1 0 3/2 0.7071 1.06065 0.7071 1.06065 45 18 1 D 0 90 -0.7071 -0.35355 0.7071 0.35355 Y2 135 -1000 0 0 180 -0.7071-0.35355 -0.7071 -0.35355 1/2 225 10000000000000000000000 1 270 0.7071 1.06065 -0.7071 - 1.06065 3/2 315 3.4142 Totaly 8.0 0

 $\frac{1}{1} = \frac{1}{1} = \frac{1}$ $a_{0} = \frac{2}{N} \frac{5y}{q_{1}} = \frac{2}{N} \frac{5y\cos 2x}{N}$ $b_{1} = \frac{2}{N} \frac{5y\sin 2x}{N}$) Sunso From the table Ey = 8 5 408 20 = 3.4142 5.45in20=0 $a_0 = \frac{2}{8}(8.0) = \frac{2}{3}$ Daviblems ao = 2 (1) Determine the Constant term and a $a_{1} = \frac{2}{N} \frac{5 y \cos 2x}{8} = \frac{2}{8} \times 3.4142 = 0.85355$ $a_{1} = 0.85355 / 1$ $b_1 = 2 \sum y \sin x$ Solos Here the Interval of 8 to 26 it of a contract of have to of do an br Fourier Series of y up to first harmonic is given by $y = \frac{\alpha_0}{2} + q, \cos x + b, \sin x$ $y = \frac{2}{8} + 0.85355 \cos(x+0)$ 225 12 -0.2071-0.35355 -0.7071 -0.35355 y=17+0.853550082 3.4143 3+24, 8.0 h

The turning moment I on the crank Shaft of a stream engine for the cramk angle 0 ig given ay follows 0° 0 30 60 90 120 150 180 210 0 2.7 5.2 7 8.1 8.3 7.9 6.8 240 270 300 330 5.5 4.7 2.6 1.2 Expand T of a fourier Series up to figgt harmonics Sole Here the interval of OG OGO C2TT period T is 2TT. we are required to find as, ai, br. The corrypanding formula age $a_0 = \frac{2}{N} \sum T$ $a_1 = \frac{2}{N} \sum Tuo go b_1 = \frac{2}{N} \sum Tsino$ N=12 2=1 N 6 P.T.D Fearier Sevier april France hasmin Tal U99 - 3- albsate + Au 317

FAGE NO. OP To COSO TCOSO SINO TSINO Shapo of o Stream braine for the court 0 30 2.7 0.866 2.3382 0.5 1.35 60 5.2 0.5 2.6 0.866 4.5032 . 7.0 00 00 00 00 F.O 90 120 8-1 8-0.5 - 4.05 0.866 7.0146 0 210 240 270 Hoj COO 0 00 0-10-3 -4.0/ 300 2.6 0.5 1.3 -0.868 -2.2516 1.2 0.866 330 1.0392 -0.5 -0.6 59.4 -20.499.2 6 971 8.9032 $a_0 = 2 \sum_{N} T \qquad a_1 = 2 \sum_{N} T \cos q \theta$ BAUZTR $=\frac{1}{6} \times 59.4 = 1 \times (-20.4922)$ 255 9=9.9 = -3-4165/ 9000 bi= 2 STSino 310 = 1 (8.9032) 0, =1.4839/1 pourier Service up to figg + harmone in $T = f(0) = a_0 + q_1 c_0 20 + b_1 Sin 0$ \$ 10 T = 4.95 - 3. 4165000 +1.4839 Sino

PAGE NO. DATE 3 Given the fallowing table x° 0 60° 120° 180° 300° 300° Y 7.9 7.2 3.6 0.5 0.9 6.8 Obtain fourier Serie neglecting higher than firgt hapmonic's a bruic Find only Fingt hanmonics lame of periodic propen Soli Here the interval of 2 13 0° to 360° i.e OGX 27T we are required to find ao, ai, b, only ro yoog I ysinx COSX Sinx 0 7.90 0 7.9500 0 3.6 6.2352 0.5 0.866 7.2 60 3.1176 -1.8 3.6 -0.5 0.866 120 -0.5 0 0.5 5 0 180 -0.45 -0.866 -0.7794 240 0.9 -0.5 -5.8888 -0.866 3.4 6.8 0.5 300 8.6846 26.9 0212-15 TOTAL N=6 2/N=13 ao = 2 Ey ao = 1/3 (26.9) = 8.9667 TC+01 ap = 2 5408x = 1/3 (18.15)=4.05 b, = 2 Eysinz = 1/2 (2.6846) = 0.8949 Fourier Series by to hirgt harmonic is nO $y = \frac{\alpha_0}{2} + a_i \cos x + b_i \sin x$ y- 4.48335 +14.05008x+0.8949Sinx)

121		
1 & FEEL	PAGE NO.	
0	DATE / /	DATE / /
Q		$b_1 = 2 \sum y \sin x = y (3.01368) = 1.00456$
	third harmonigs given	
	2 0 TT/3 2TT/3 TT HT/3 ST/3 2TT	$\frac{1}{N} = \frac{2}{N} \sum y \sin 2x = y_3 (-0.32908) = -0.1097$
6341	y 1.98 1.30 1.05 1.30 -0.88 -0.25 1.9	3
- 01	than fordt harmonica.	$b_3 = 2 5ysin 3x = y_3(0) = 0$
Sol"		the formation of the second se
	and value of y at DC=0 and x=2TT	· Fourier gerie up to third harmonig is
	must be same by periodic property	$y = \frac{q_0}{2} + (q, \omega q x + b, \sin x) + (q_2 (oq 2x + b_2 \sin 2x))$
00	$f(x+2\pi)=f(x)$	
	value of y at 2=0 & 21T are both	+ (03 CO 7 30 C + 63 SIN 3 X)
house	given & we must omit one of them	and be a start and and and the
	let up omit last value (217) By defin	y = 0.75 + (0.3733 conx + 1.00456 sinx)
in hom the	be govern problem interval is of 2 5217, we must	+ (0.8900922-0.1097SIN22)+
0	the value of a are	(-0.0667cog3x)
67352	0, 60, 120, 180, 240, 300, N=6	The state of the s
3-1176	2×20 180 36 -0.5 -1.8 0.864	
20	y yoosa yoosa yoosa yoosa	y sinz 1 ysinzz ysin3 20
0000	1.98 1.98 1.08 1.00	-0 0 0
60	1.3 0.65 -0.65 -1.3 112	258 1.1258 0
120		093 -0.909.3 0
180		
240		262 08 -0.76208 0
. 300	0 -0.25 -0.125 0.125 0.25 0.3	316 5 0.2165 0
TOtal		013 68 -0-32908 0
2	an = 3 Sulp82 = V (18.15)=410	
	$a_0 = 2/5 = \frac{5}{3} (u \cdot 5) = 1 \cdot 5$	Do yourgelf
949	0 = 2 Sysmin = V (3.6348) = 0.8	By compute the hight two harmonics
	$Q_{1} = 2 5y \cos x = \frac{1}{3} (1 \cdot 12) = 0.3733$	of fournier genes of f(2) given the
11 2	forger Scure as a for the forth Minut	following table
	$a_{g} = \frac{2}{N} \sum y (0, 8, 2) = \frac{1}{3} \times \frac{2.67}{3} = 0.89$	2 0 11/3 211/3 11 41/3 51/3 211
		enviete 1 1011 1.9 1.7 1.5 1.9 1
(xur	a3 = 2, Eyoo83x = 1/3 (-0.2) = -0.0667	f(x)=y 1 1.4 1.9 1.7 1.5 1.2 1
	IN COLOR IS	

				-	NEARRA-						NOsena	
Soine voluer of f(x) = y in the interval					-				PAGENO. DATE / /			
	(0 = x = 2TT and bence the last						ANTER COL LAR DETEND & THE SCHOOL				
that 0-					same as	elos	-	1.3.4	21 p8 41	4133 11 344	10 C92	
		value f 19#) = 1 which ig jame of flo) omit last value				Warter & ch						
	549 549 549 5 5 4 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5					Contraction of 9:						
26	y	Cogz	C0322	Sinz	SINZZ	y co82	4000		ysinx	y sin 22	VCON V	
0	wanted .	PARTE	St Nos	0	1000	1	1			114181ABA D	mada -	
60	1.4	0.5		0-866	0-866	0.7	-0.7		1-2124	+1-9924	M Wagen and	
120	1.9	-0.5	-0.5	0-866	-0.866		1	1	1-8454	-1.6454		
180	1.7	(28005)	9324+63	-	0	-1.7			0	D	(chron th	
240	1.5	-0.5	- 0.5	-0.866		-0.75	-0.7		-1-299	1.299	confiction	
	1.2	0.5	- 0.5	-0-866		0.6	-0	0	-1.0392	-1-0392	the Fuest	
TOtals	t.	47SAN22	122-0.10	c. 89 aug		-1-1	-0.	3	0-5196	-0-1732	- 6 12	
			8056330:				The second second					
	α,	= 2	5 y 008x	= 400	1010 -0.	366	Do yourgelf,					
		//					~~~					
	a.	2=2	540002	X = MQ.	161561 2 -	D.I. Tak	E	Fini	d fourier	Series to	reprejent yez)	
		/ /			0 0	101732	upto second harmonic from the					
	bi = 2 Eysinoc = AOIH \$ 28 MURRESS				following data							
	-0.9093					tength of intervaling 8-020						
	$b_2 = \frac{2}{N} \sum y \sin 2x = t + 16 N = -0.05773$					2° 30 60 90 120 150 180 210 240 270 300						
C	Imo L				-0.76208	80	y 2.34 3.01 3.68 4.15 3.69 2.20 0.83 0.51 0.88 1.09					
P			h un		en alle	01000	- 330 300					
	a,	C0927	bisinx	& 42	0922 + 02	SINZE	1.19 1.64					
Tayto	- 1-0.5	2420000	+ 10 - 1235	sinz	e		quan by					
they a			c+0.1732	and the second se			Sol? The period of y(x) ig 21T # BBW					
the			-0.052			X	a intervaling bezelent up a					
(-0.1682x-0.0577sin2x)					y(x) = 90/2 + 9, 009x + 9, 00f2x + b, Sinx+b, Sin2x							
10 2	tiscs "	TT I			Ked fou	nien	1 (1) B Hy 1 4 W/2 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
fiaf	01 /= ·	F-5			econd th		$a_0 = u \cdot 2017$ $a_1 = -0.28$ $a_2 = -0.18$ $b_1 = 1.61$ $b_2 = -0.5$					
harm							$p_1 = 1.01$ $p_2 = -0.0$					
112	-ics then find g						Eindout					
										Firado		
The state of the s	-	and the second second second				and the second s		A REAL PROPERTY.				

FAGE NO. DATE / / NOTE: OIL the period is not 21T, we equate it with 21 to obtain the Value of l. @ The Summation of yo ycogo, ycoszo...., ysino, ysinzo... where O = #2 will be required to Compute the dyired harmonics. (P) obtain the Constant term and Co-efficients of firgt cogine & Sine fermy in the fourier stories, expanyion of y from the table. 20 0 1 2 3 4 5 Y 9 18 24 28 26 20 Sol?' The Valuy at 0,1,2,3,4,5 and given N=6 interval of to should be obx26 Indertoid of 2 should be ordered length of interval ig 6-0=6 Qquate to 20 20=6 1=3Fourine Survey of poriod 20 is given by $y = f(x) = \frac{a_0}{2} + \frac{5}{n=1} + \frac{9}{n} + \frac{5}{n=1} + \frac{5}{n} + \frac{5}{n}$ 008 020 000 1.09 + 6. S. 602 X put d=3, Surie containing fight harmonie ig $y = f(n) = \frac{a_0}{2} + \frac{a_1 \cos \pi x}{3} + \frac{b_1 \sin \pi x}{3}$

PAGE NO. DATE writing $\frac{\pi}{3} = 0$, $\frac{y=a_0}{2} + a_i \frac{a_0}{9} 0 + b_i sin 0$ + mulo N=6 12 m=0/ 1000/000 ysino Sino ywjo 0090 0=112 4 13 \mathcal{O} x 0 9 5 1 15.588 1 0 0.866 9 0.5 0 9 60° 20.784 0.866 18 0.5 0 120 24 -28 2 -22.516 -1 -0.866 1800 28 -13 3 1-0.5 -17.32 2 uo -0.866 26 H 10 0.5 TR (00,1) 3000 -3.464 -25 20 5 TRE Total 125 : constant term $a_0 = 25y = 41.67$ ao/2 = 20.835 $q_1 = \frac{2}{N} \frac{\xi y \omega \partial \phi}{\partial x} = 8.333$ co-eff $\frac{g}{2}$ 18t $\frac{\delta g}{\partial y}$ ine -8.333 & -1.155 6,=2, Eysine = -1.155 repetively If they after fouries going up to figgt haymonic st f(n) = ao/2 + a, coso + b, sino = & D. 835-8.333cofo -1.1555ino $= 80.835 - 8.33308(\pi_{a}) - 1.155Sin(\pi_{a})$ f(x) = Q0.835 - 8.333.08(Tx) - 1.155.5in(Tz)

Da yourgif
(B)* Express y a fourner Series
(up to 3rd hasmonics given the following data 7 4 B= #2 : 6090 40070 45:00 0 1 2 3 4 5 X A 8 15 7 6 2 05 9 0.866 1 The interval of DLY OGXLG 126.00 21=6 => 1=3, N=6 1 =1 Soino Fourier Series up to 3rd harmonics $Y = \frac{\alpha_0}{\vartheta} + \left(\begin{array}{c} q, co \\ \hline u \end{array} \right) + \begin{array}{c} b, sin \\ \hline u \end{array} \right) + \left(\begin{array}{c} q, u \\ \end{array} \right) + \left(\begin{array}{c} q, u \end{array} \right) +$ -3464 + b2 SIN 2112) + (03 CO BITZ + b3 SINTIZ u) mast 200 chure l=3 - & 9000 NZ 1.St Cogine $\begin{array}{c} y = \frac{a_{0}}{2} + \left(a, \frac{\omega_{8}\pi_{2}}{3} + b, \frac{s_{1}\pi_{2}}{3} \right) + \left(a_{2}\frac{\omega_{8}2\pi_{2}}{3} + b_{3}\frac{s_{1}}{3} \right) \\ + \left(\frac{a_{3}\cos_{8}2\pi_{2}}{3} + \frac{b_{3}s_{1}\pi_{2}}{3} \right) \\ \end{array}$ put 112 0 $y = \frac{a_0}{2} + (q; cop o + b, s; no) + (a_2 co 820 + b_2 s; n20)$ 1 (0300830 + b3Sin30) Then construct fable. Find ao, a, az, az b, bz, bz 211/11/25

the Home LOOT KIUM FAGE NO. MEANTER DATE 1970										
the per per DATE 1 1100										
The period of y(x) is STILE 360	The period of yex) is still 360°									
	Fourier Series upto second harmonic is									
$y(x) = \frac{\alpha_0}{2} + \alpha_1 \cos 2x + \alpha_2 \cos 2x + b_1 \sin 2x + b_2$										
$q_0 = 2 \Sigma Y, q_1 = 2 \Sigma Y \cos 20 q_2 = 2 \Sigma Y \cos 20$										
N N N										
$b_1 = \frac{2}{N} \sum y \sin 2c b_2 = \frac{2}{N} \sum y \sin 22c$										
2° Y COS 7C CO2X SIN X SIN 2X YOO X YOORX YSINI YSINI										
30° 2.34 0.87 0.5 0.5 0.87 2.0358 1.17 1.17 2.0358										
60° 3.01 0.5 -0.5 0.87 0.87 1.505 -1.505 2.6187 2.6187										
90 3.68 0 -1 1 0 0 -3.68 3.68 0										
120 4.15 -0-5 -0-5 0-87 -0.87 -2.075-2.075 3.6105-36105										
150 3.69 -0.87 D.5 0.5 -0.87 -3.2103 1-845 1.845 -3.2103										
180 2-20 -1 0-5 0 0 -2-2 2.2 0 0										
210 0-83 -0.82 0.5 -0-5 0.82 -0.7221 0.415-0.415 0.7221										
240 0°51 -0.5-0.5-0.87 0.87 -0.255 -0.255-0.0037 0-0137										
270 0.88 0 -1 -1 0 0 -0.88 -0.88 0										
800 1.09 0.5 -0.5 -0.87 -0.87 0-545 -0.545 -0.9483 -0.9483										
330 1019 0.87 0.5 -0.5 -0.87 1.0353 0.595 -0.595 -1.0353	25									
860 1064 1 1 0 0 1064 1.64 0 0 25.21 -107013 -10075 96422 -2.9841	2									
$a_0 = \frac{25.61}{6} = 4.2017$										
$a_1 = -0.28$ $a_2 = -0.18$										
$b_1 = 1.61$ $b_2 = -0.5$										
required fourier Seviel up to Second										
hanmonic is given by										
$y = 2 \cdot 1 + (-0 \cdot 28 (28 \times + 1 \cdot 61 \sin x))$										
$f(-0.18\cos 2x - 0.5\sin 2x)$										

PAGE NO. DATE / / problem Solution (8) Interval que oc is ogoch6 : 21=6 1=3 $N = 6 \quad 2 = 1$ Fourier Serier up to 3rd harmoning is $y = \frac{\alpha_0}{\alpha} + (\alpha_1 \cos \pi z + b_1 \sin \pi z) + (\alpha_2 \cos 2\pi x + b_2 \sin 2\pi x)$ $+\left(a_3\cos^3\pi^2 + b_3\sin^2\pi^2\right)$ where l=3 $\frac{a_0}{a} + (a_1 \cos(\frac{\pi 2}{3}) + b_1 \sin(\pi 2)) + (a_2 \cos(2\pi 2) + b_2 \sin(2\pi 2))$ $+\left(\begin{array}{c} a_3 \cos 8\left(3\pi 2\right) + b_3 \sin \left(3\pi 2\right) \\ \hline 3 \end{array}\right)$ $put \quad \frac{\pi 2}{3} = 0$ thore Co-efficient in the $\frac{a_0}{2} + (a_1 \cos 80 + b_1 \sin 0) + (a_2 \cos 820 + b_2 \sin 20)$ (a300830+b351030) ysinzo 0=173 y ycoso ycos20 ycos30 ysino ygzo ysiA30 20 0 4 4 4 4 0 0 0 0 60 8 4 -4 -8 6-928 6.928 0 1 120 15 -7.5 -7.5 15 12.99 -12.99 2 0 180 7 -7 0 0 0 3 840 6 -3 -3 6 -5-196 5-196 0 4 300° 2° 1° -1 -2 -1.732 -1.732 42 -8.5 -4.5 8 12.99 -2.598 5 0 0

 $a_0 = 2 \Sigma Y = \frac{1}{2}(u_2) = 14$ 1 1 Hay Range Lourner 11=00 Seares homewood problems $a_1 = 2 \frac{5}{2} \frac{5}{2} \frac{(-8.5)}{3} = -2.833$ bi = 2 545: no = 1 × 12.99 = 4.33 $Q_2 = 2 5yco 820 = 1 (-u \cdot 5) = -1 \cdot 5$ by = 2 549in20 = 1 (-2.598)= -0.866 $a_3 = 2 \frac{5}{2} \frac{5}{2} \frac{5}{2} \frac{5}{2} \frac{5}{2} \frac{5}{2} = \frac{1}{2} \frac{5}{2} = \frac{1}{2} \frac{5}{2} \frac{5}{2}$ $b_3 = 2 \sum y \sin 30 = 1(0) = 0$ Required fourier Series upto 3rd harmonig is $y = 7 - 2 \cdot 833 \cos \pi x + u \cdot 335 \sin \pi x - 1 \cdot 5 \cos 2\pi x$ 3 -0.866 SIN 2 + 2.667 COST 2 obtain the constant term and first (9) three co-efficient in the pourier coline Berig for y wing following table x 0 1 2 3 4 5 y 4 8 15 7 6 2 75.435 10.0 Here the interval of DC y OGILB Sor: Since Co-efficients of Pourier cosine servier are to be found, coe have to conclude that it should be cosine half range fourier govies of y=f(x) in (0, 6)

PAGE NO. DATE comparing with half range (0,0) we get l=6 : fournier cogine & evie ig op the form $y = a_0 + \sum_{n=1}^{\infty} a_n \cos n\pi n$ $y = \frac{a_0}{2} + \frac{a_1 \cos \pi x}{u} + \frac{a_2 \cos 2\pi x}{u} + \frac{a_3 \cos 3\pi x}{u} + \frac{a_4 \cos 2\pi x}{$ W.K.T 2=6 $y = \frac{\alpha_0}{8} + \frac{\alpha_1 \cos \pi 2}{6} + \frac{\alpha_2 \cos 82\pi 2}{6} + \frac{\alpha_3 \cos 3\pi 2}{6} = \frac{\alpha_3 \cos 3\pi 2}{6}$ Talle TTZ = 0 $y = \frac{a_0}{2} + a_1 \cos 0 + a_2 \cos 20 + a_3 \cos 30 - 0$ Now, one have to find ao & a, a, a, a3 $q_0 = \frac{2}{N} \sum_{i=1}^{N} q_i = \frac{2}{N} \sum_{i=1}^{N} \sum_{i=1}^{N}$ 03=2 Ey 00830 r 1 4 1 5 0 13.696 -8.5 -5

PAGE NO. Ey=ua Eycoso=13.696 540920=-8.5 5400830 = - 5 $a_0 = 1 (42) = 14$ $q_1 = 1 (13 \cdot 696) = 4.565$ 142112 $a_2 = 1(-8.5) = -2.883$ $a_3 = -5 = -1.667$ required values ao a, az, az are repectively 7, +4.565, -2.833 & -1.667 O > y= + u-565000 + (-2-833)00920 - 1-6670930 $y = 7 + 4.565col(\pi 2) + (-2.833)col 2\pi 2c$ - 10667083172 NO NO IN TO IN THE REAL PROPERTY IN - 25 9 - 1- 2 32 1 1 1/3- 217- 12 - 12/1 PIE 269-61 11 5 3 10 Maria

Automatic Constants of Constants	10 P. M.	AND LAD		
Sparts and main in time domain of frequencies frequencies frequencies forms converted to Fourier Torans forms frequencies fourier torany forms				SURYA Gold
Sign Jeg Joan	Traceforms			Properties
convol alla	Fourier fourist		0	Jinearity property:
Freque	loomi	Porms	O	difference part to harry
The	nite fourier trans	- a forma		$F_{c}\left[c,f,(x)+c_{2}f(x)+\cdots+c_{n}f_{n}(x)\right]$
1.1	Toverse fourier	trans to me		
Infinite fourier transforms and Inverse fourier transforms				= c, $F_{c}[f_{1}(x)] + G_{2}F_{c}[f_{2}(x)] + \cdots + C_{n}F_{c}[f_{n}(x)]$
	0 1.00	tromsforms		
The infinite fourier transforms or Simply the fourier transform of a or Simply the fourier transform of a			0	change q Scale property:
100 0 07	Simply the fourier for	14 defined	C	$Zf f_c [f(\alpha)] = F_c (u) \text{then}$
or Simply the fourier transford real valued function $f(x)$ y defined by $f[f(x)] = \int_{0}^{0} p(x) e^{iux} dx$				If flfing - rain and
a se bu	$F[f(x)] = \int f(x)$	enau		Consol U.C. (W)
10000				$F_{c}\left[F(ax)\right] = \frac{1}{6}F_{c}\left(\frac{1}{4}a\right)$
0 20 20	-00			
× 2 2	integration we obt	win a f q u	3	Modulation properties
e e e on	h is yually denoted t	I FILL OT FLUS	e	T_{f} $F_{s}\left(f(x)\right] = F_{s}(u)$ and $F_{c}\left[f(x)\right] = F_{c}(u)$
son cohici	hy yually derived	19 tonnsform		TE PS [F ()] = IS () IS (
and a	The INVERSE FOUR	ried licensi		thom C C ferrico carle V (C Muta) + C Muta)
90 12 19	FILL) denoted by F	[FLUS] Do		$\mathcal{O} F_{s} \left[f(x) \cos \alpha x \right] = \frac{1}{2} \left[F_{s} \left[u + a \right] + F_{s} \left[u - a \right] \right]$
				$ \mathbb{Q} f_{s} \left[f(z) \sin \alpha z\right] = \int \left[f_{c}(u - \alpha) - F_{c}(u + \alpha)\right] $
x ET	flus j defined b	y the	1 20 - 1	
ir	HORAL I (W) CIU) (-iux del		$ \Im f_c [f(x) cos \alpha x] = \frac{1}{2} [f_c (u+\alpha) + f_c (u-\alpha)] $
	$\frac{f(u)}{2\pi}\int_{u}^{u}f(u) du$			
	alanation and obta	in a f of x		() $F_{c}[f(x)Sinax] = \frac{1}{2} [F_{s}(u+a) - F_{s}(u-a)]$
on II	Attyquitor we con	in flux du		OFCLANDING JALIST JAST
FDC	$ntegration we obta$ $f = \int F(u) J = \frac{1}{2\pi} \int_{w}^{w} F$	(u)e un		
	-10	- P m P		Problems
Fourier Cost	ne and fourier Sine t	gans for ins	\odot	Find the Complex fourier triany form of
Tryparole fou	men nosine & I.F. S	ine trougforme		the function $f(x) = (1 \text{ for } x \le \alpha$
Fourier Cosine and fousier Sine Sine trionyforme Inverge fourier Cosine & I.F. Sine trionyforme 2+ F(x) & defined for all possible value of x, we define the following TOVERSE. TRAN			Dec	+1 0 for 121>a
TYPE	TRANSFORM	INVERSE TRAVI		18
	ip' int de CIII)	1 (FIU) E UZ du=	0.400)	1 have even the Corr 1
fourier transform	$\int_{0}^{\infty} f(x)e^{iux}dx = F(u)$	T Fluid au-	f(x)	and homa evaluate (Sinx dx
	1	0"-10		Jo
	lb down fun	D C C C C C C C C C C C C C C C C C C C	111- 8/2	
Fourter COSINE	$\int_{C}^{\infty} f(\alpha) \cos(\alpha x) dx = f(\alpha)$	a/ Folulosue	au spin	Solo fourier transform of f(x) is
Tranyform	JD			
	\mathcal{O}	2 (Fs (W) sinux du	=f(x)	given by
Fouring Sine	$\int_{a}^{\infty} f(z) \sin u z dx = \int_{a}^{a} f(u)$	211 5		
Tranyform -		0		

 $F(u) = \int_{0}^{\infty} f(x) e^{iux} dx$ For -a SDC Sa f(x) =1 otherwise 0 $\int 1 \cdot e^{iux} dx$ -0 eiux a $= \frac{1}{10} \begin{bmatrix} e^{iua} - e^{-iua} \end{bmatrix}$ $\frac{1}{10} \begin{bmatrix} e^{i\theta} - e^{i\theta} \end{bmatrix}$ $\frac{1}{10} \begin{bmatrix} e^{i\theta} - e^{i\theta} \end{bmatrix}$ $= \frac{1}{10} \begin{bmatrix} e^{i\theta} - e^{i\theta} \end{bmatrix}$ $= \frac{1$ = 1 gisinau ju FLU) - 2 sinay U Let y evaluate Sinx dx Flu) = 2 Sinau u F(-u) = + 2 sinatu)= - 2 sinau = 2 sinau = F(u)

SURYA Gold Date____Page F(-u) = F(u). F(u) is an even function Inverse Fourier transform is $\frac{1}{2\pi}\int_{u}^{\infty}F(u)e^{-iux}du=f(x)$ $\frac{1}{2\pi}\int_{-u}^{b} \frac{\partial sinau}{\partial t} e^{iux} du = f(x)$ $\int_{\pi}^{\omega} \frac{\sin \alpha u}{u} e^{-iu\alpha} du = f(\alpha)$ S. ala f(x) = 1 for $|x| \leq a$ Now, let us take x = 0value of f(x) at x = 0 is 1 i.e f(0)=1 f(0) = 1 (¹⁶ Sinau e^o du $l = 1 \int_{T}^{to} Sinau \, du$ $\frac{3inay}{u} is even function$ $\frac{\pi}{u} = 2 \int_{u}^{u} Sinay du$ $\int_{D}^{\infty} \frac{Sinau}{u} \, du = \pi$ put a=1 and thanging 11 to x $\int_0^{16} \frac{\sin 2c}{x} dx = \frac{11}{2}$

WO AYAUR ③ TP P(20)= ∫ 1-x² /2/21 ○ 12/≥1 Find the fourier transform & first & hence find the Value of Of 20008x-sinx dx June 2017, Dec16, $\bigcirc \int_{0}^{\infty} \frac{x\cos x - \sin x \cos (x)}{x^3} dx$ 18 $F(u) = \int_{p(x)}^{\infty} e^{i u x} dx$ Solo $f(x) = \int 1 - x^2$, for $-1 \angle x \angle 1$ $\int 0$ otherwise $F(u) = \int (1-x^2)e^{iux} dx$ APPly Bernoullis rule $F(u) = \begin{bmatrix} (1-x^2) e^{iux} - (-2x) e^{iux} - 2 e^{iux} \\ i^2 u^2 & u^3 \end{bmatrix}$ $\frac{(1-x^2)e^{iux}}{iu} + \frac{2xe^{iux}}{-u^2} - \frac{2e^{iux}}{-\frac{2}{u^3}}$ $i^{2} = -1, 1_{0} = -1$ $= \left[(1-x^{2}) \frac{e^{iux}}{u} x - i - 2xe^{iux} - \frac{i2e^{iux}}{u^{2}} - \frac{i2e^{iux}}{u^{3}} \right]$

 $= \begin{bmatrix} 0 - 2e^{iu} \\ u^2 \\ u^2 \\ u^3 \end{bmatrix} = \begin{bmatrix} 0 + 2e^{iu} \\ -2ie^{iu} \\ u^2 \\ u^2 \\ u^3 \end{bmatrix}$ $= -\frac{2e^{iu}}{\mu^2} - \frac{2ie^{iu}}{\mu^3} - \frac{2e^{-iu}}{\mu^2} + \frac{2ie^{-iu}}{\mu^3}$ $= -\frac{2}{u^2} \left(e^{iu} + e^{-iu} \right) - \frac{2i}{u^3} \left(e^{iu} - e^{-iu} \right)$ $= -\frac{2}{12} \left[(\cos u + i \sin u) + (\cos u - i \sin u) \right]$ $-\frac{2i}{u^3}\left[(\cos(u+i)\sin(u)) - (\cos(2u-i)\sin(u))\right]$ $= -2 \left[2\cos(x) + 2i\sin(x) - 2i\right]_{1,3}$ $= -\frac{H}{u^2} \left[\frac{CO8u}{-H(-1)} \right]$ = -H cosu + H sinu $F(u) = H\left(-\frac{\sin u - v\cos u}{u^3}\right)$ $\frac{u^3}{\sqrt{16}}$ $\frac{1}{\sqrt{16}} = \frac{1}{\sqrt{16}} \frac{1}{\sqrt{16}}$ F(u) = H(Sinu-ucosu) u^{3} $F(-u) = H\left(-\sin u + u\cos u\right) \\ -u^3$ $= + H (\delta i n u - u \cos u)$ $F(-u) = F(u) \quad ij \quad a \quad even \quad function$

Three fouries transform is given by

$$f(x) = f(x) = 1 - x^{2}$$

$$f(x) = 1 - x^{2}$$

$$f(x)$$

P(u) = H(SINU - UOSU) u^{3} FL-U) = Flu), in a even function $f(x) = \frac{1}{2\pi} \int_{0}^{\infty} F(u) e^{-lux} du$ $f(x) = \frac{1}{2\pi} \int_{u^3}^{\infty} H(sinu-ucosu) e^{-iux} du$ out $\mathcal{D} = Y_2$ $f(x) = 1 - x^{2} = 1 - (\sqrt{2})^{2} = 1 - \sqrt{4} = \frac{3}{4}$ $\frac{3}{4} = \frac{1}{2\pi} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{H(Sinu - u\cos Su)}{u^{3}} e^{-\frac{1}{2}u \cdot \frac{1}{2}} du$ $\frac{3}{4} = \frac{4}{2\pi} \int_{u^3}^{u^3} \frac{1}{u^3} \left(\frac{\cos u_2 - i \sin u_2}{u^2} \right) du$ Flu) = Sinu - 11000 is even function $\frac{3}{u} = \frac{2\pi}{\pi} \times 2 \int_{0}^{\infty} \frac{\sin u - \alpha \cos u}{u^{3}} \left(\frac{\cos u}{2} - \frac{i \sin u}{2} \right) du$ $\frac{3\pi}{16} = \begin{pmatrix} 0 (\sin u - u\cos \beta u) (\cos \alpha \beta - i\sin \eta_2) du \\ u^3 \end{pmatrix}$ equating real parts on B.S 317 = (Sinu - ucosu . Cosu/ . du Changing u to x $\int_0^{\infty} \frac{[Sinx + x\cos x]\cos(x_2)}{\sqrt{3}} dx = \frac{3\pi}{16}$

BURYAGH $\frac{90008 \text{ oc} - \text{Sin} \times dx}{2^3} = -\frac{3\pi}{16}$ END - I I CONT - COMP Find the fourier transform of $f(x) = e^{-12c}$ 3 June Dec 2018 |x|= x if x >0 -x if 240 Fourier tranyform of f(x) y given by f(u) = 1° f(x) e^{lux} dx Soil here $f(x) = \int e^{-x} for x > 0$ $e^{x} for x < 0$ $F(u) = \int_{0}^{0} e^{x} e^{iux} dx + \int_{0}^{\infty} e^{iux} dx$ $= \int_{a}^{b} e^{(1+iu)x} dx + \int_{a}^{b} e^{(1-iu)x}$ dr ub/ white $\begin{array}{c} \circ & -(1-iu)x \\ + \begin{bmatrix} e \\ -(1-iu) \end{bmatrix} \end{array}$ $\frac{e^{i+i\omega x}}{i+iu} + \int$ = O cinut - UCCSH Mesury - ising) du $= \int_{1+iu}^{i} - 0 \int_{1+iu}^{i} + \int_{1-iu}^{0} - \int_{1-iu}^{i}$ UN Fill $= \frac{1}{1+iu} + \frac{1}{1-iu}$ = 1 - iu + 1 + iu(1+iu) (1-iu) = +284 $1+i^{2}u^{2}$

SURYA Gold $F(u) = \frac{2}{1+u^2}$ Find the fourier transform of Ð f(x) = { 1-1x1 for 1x1 ≤1 & hence deduce 0 for 1x1>1 June 2018 that $\int_{-\frac{1}{2}}^{10} \frac{\sin^2 t}{t^2} dt = \frac{\pi}{2}$ (30) = 120 for 20 7/9 Solo E-50 1961 100 1210 10000 $f(x) = \int |-1x| for -1 \le x \le 1$ $\int 0 for |x| > 1$ $F(u) = \int_{1}^{u} \int_{1}^{u} \int_{1}^{u} \int_{1}^{u} dx$ $F(u) = \int_{-\infty}^{\infty} f(1 - (-x))^2 e^{iux} dx + \int_{-\infty}^{\infty} f(1 - (x))^2 e^{iux} dx$ $= \int (1+x)e^{iux} dx + \int (1-x)e^{iux} dx$ A.B.R $= \left[(1+x) \frac{e^{iux}}{iu} - (1) \frac{e^{iux}}{iu^{2}} \right] + \left[(1-x) \frac{e^{iux}}{iu} - (-1) \frac{e^{iux}}{iu^{2}} \right] dix$ $= \left\{ \frac{1}{i^{u}} + \frac{1}{u^{2}} \right\} - \left\{ \begin{array}{c} 0 + e^{-iu} \\ \frac{1}{u^{2}} \\ \frac{1}{u^{2}}$ $= -\frac{u}{u} + \frac{1}{u^2} - \frac{e^{iu}}{u^2} - \frac{e^{iu}}{u^2} + \frac{u}{u} + \frac{1}{u^2}$ = 2/2 - 1/2 [eiu + eiu]

Scanned with CamScanne

 $\frac{3}{u^2} - \frac{1}{u^2} \left[\frac{2}{2} \cos u - i \sin u^2 + \frac{2}{3} \cos u + i \sin u^2 \right]$ 2 - 2008U u2 u2 W.K.T 2 (1-08U) ur C0820 = C018 - Sino $= \frac{2}{u^2} \times \frac{2}{3} \sin^2 \frac{u}{2}$ $F(u) = Hsin \frac{u}{2}$ u^2 cof 20= 1-2 sin20 cox20-2cop20-1 $COBO = 2COPO_{12} - 1$ 20100/2 = 1-20100/2 20100/2 = 1-030 Enverye F.T. by $f(x) = 1 \int_{-cb}^{co} f(u) \bar{e}^{fux} du$ $= \frac{1}{2\pi} \int \frac{Hsin^2y_2}{u^2} e^{iux} du$ R 60

 $f(x) = \frac{1}{2\pi} \int \frac{\sin^2 u}{2\pi} \frac{1}{-\infty} \frac{\sin^2 u}{\frac{u^2}{4}} \cdot \frac{e^{-iux}}{\frac{u^2}{4}} du$ N.Ca asin u x put x=0 f(0)=114 4 $1 = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\sin^2 u}{(u/2)^2} du$ put $u_{2} = t = du = 2dt$ U varie from - 00 to 00 t varie from -00 to 00 $-\int_{\pi}^{10} \frac{1}{2\pi} \int_{10}^{10} \frac{1}{t^2} \frac{1}{t^2}$

Sint y even function $\frac{1}{\pi} = \frac{1}{\pi} \frac{\partial}{\partial t} \frac{\partial}{\partial$ $\int_{0}^{10} \frac{\sin^2 t}{t^2} dt = \frac{TT}{2}$ (a) Find the fourier sine & cosine transformy $J_{2018}^{une} = f(\infty) = e^{-dx}, \ d > 0$ Soin's Fourier Sine and Cosine transforms age given by $F_{SLU} = \int_{0}^{\infty} f(x) \sin u x \, dx \text{ and } F_{CLU} = \int_{0}^{\infty} f(x) \log u x \, dx$ Foru) = [edx. Sinusc dx $w.K.T \int e^{ax} Sinbx = e asinbx - blogboc$ $= \int \frac{-\alpha x}{c^{2}} \left[\frac{-\alpha s inu x}{c^{2} + u^{2}} - \frac{\alpha s inu x}{c^{2} + u^{2}} - \frac{\alpha c s u x}{c^{2} + u^{2}} \right]_{0}^{\infty}$ - xx e ->0 cy xc >∞ i.e e =0 e = 1 $0 - \frac{1}{\sqrt{2} + u^2} \left[-d \sin(0) - u \cos(0) \right]$ = -1 [0 - u] = 4

SURYA Gold Onto. $F_{s}(u) = u$ $\chi^{2} + u^{2}$ Felu) = fixcosux dx $=\int_{0}^{\infty} e^{-dx} \cos ux \, dx$ $\int e^{ax} \cos bx = e^{ax} (a \cos bx + b \sin bx)$ $a^{2} + b^{2}$ W.K.T $= \frac{e^{-\alpha x}}{(-\lambda)^2 + u^2} \left[-\alpha \cos(\alpha x) + u\sin(\alpha x) \right]$ $e^{-\infty}$ =0 $-\frac{1}{\chi^{2}+\mu^{2}}\left(-\chi \cos(0) + \cos(0)\right)$ 0 1 $\frac{-1}{\alpha^2 + u^2} \times - \alpha(1)$ 1 $f_{c}^{2}(u) = \alpha$ $\alpha^{2} + u^{2}$ 02018 (G Obtain the fourier Cosine transform of the function $f(x) = \begin{cases} \mu x, & 0 \neq x < 1 \\ \mu - \chi, & 1 < x < \mu \\ 0, & x > \mu \end{cases}$

ALLA GAR Son: Fourier Cooine transform is given by Felu) = (fix) Cosux dx = f f(x)cosucedx + f f(x)cosucedx + f(x)cosux dx = $\int H \mathcal{D}C \cos u \mathcal{D}C dx + \int (H - \mathcal{D}) \cos u \mathcal{D}C dx + \int O \cos u \mathcal{D}C dx$ = [Hx co oux dx + [14-x) coluce doc +0 APPly B. Rule = $\frac{1}{4}$ Hxx Sinux + H. Cosux + (H-x)Sinux - (-1)x-c u u² U $= \left[\begin{array}{c} H \\ H \\ u \\ u \\ u^{2} \end{array} \right] + \left[\begin{array}{c} H \\ H \\ u^{2} \\ u^{2}$ = HSinu 3Sinu HOSU COSU - H - COSHU<math>u u^2 u^2 u^2 u^2 u^2 u^2 $= \frac{5 \ln y}{u} + 5 \frac{\cos y}{u^2} - \frac{\mu}{u^2} (4 + \cos 4 u)$ (P) $= \frac{\sin 4}{u} + \frac{5\cos 4}{u^2} - \frac{H}{u^2} - \frac{\cos 44}{u^2}$ $F(u) = \frac{(u)}{u} + \frac{5\cos(u) - 4}{u^2} - \frac{\cos(u)}{u}$

SURYA Gold Data___ Doyouryeif Ð Find the fourier cosine transform of $f(x) = \begin{cases} x & for \ 0 < x < 1 \\ 2 - x & for \ 1 < x < 2 \\ 0 & for \ \infty > 2 \end{cases}$ Sol? $F_c(u) = \int_{-\infty}^{\infty} f(x) \cos ux \, dx$ = $\int f(x) \cos ux dx + \int g(x) \cos ux dx + \int f(x) \cos ux dx$ $= \int_{0}^{2} x \cos x \, dx + \int_{0}^{2} (2 - 3c) \cos x \, dx + \int_{0}^{\infty} 0 \cdot \cos x \, dx$ = $\int x \cos u x \, dx + \int (2 - x) \cos u x \, dx + 0$ sur u2 3Siny - while $\frac{1}{2} \cos \frac{1}{2} \cos \frac{1}$ Ξ (-1) x - winx $= \int \left(\frac{8 \ln u}{u} + \frac{\cos u}{u^2}\right) - \left(\frac{0 + 1}{u^2}\right) \left(\frac{1}{u^2} + \frac{1}{u^2}\right) \left(\frac{1}{u^2}\right) \left(\frac{$ $-\left(\frac{\sin 4}{4}-\cos 4\right)$ $\frac{cofu}{u^2}$ $\frac{Sinut}{u} + \frac{\cos u}{u^2} - \frac{1}{u^2} - \frac{\cos 2u}{u^2} - \frac{\sin 4}{u} + \frac{1}{u} + \frac{1}{u^2} +$ $= \frac{9.0080}{u^2} - \frac{1}{u^2} - \frac{0.0824}{u^2}$ $F_{c}(u) = \frac{2co_{8u} - co_{82u} - 1}{u^2}$

HO AYSUE (a) Find the fourier Sine transform φ $pec_{gois} = e^{ixi} g$ hence evaluate $\int_{0}^{\infty} \frac{x \operatorname{Sinm} x}{1+x^{2}} dx m > 0$ Son: Fourier Sine transform is given by $F_{SIU} = \int_{0}^{\infty} f(x) Sinux dx$ Folu) = (e Sinux dx Si ("e" Sinux dx Since 1x1=x, >c>0 $\omega \cdot K \cdot T \left(e^{\alpha x} \operatorname{Sinb} x = e^{\alpha x} \left(\operatorname{asinb} x - b \omega \right) \right)$ $= \begin{bmatrix} -\infty \\ -\infty \end{bmatrix} - Sinux - ucosux \end{bmatrix}$ $= \begin{bmatrix} e^{\infty} & (-\sin u x - u \cos u x) \end{bmatrix}$ =) $e^{-00} = 0$, e^{-1} , Sino = 0 $e^{-0} = 0$, e^{-1} , Sino = 0 coso = 1 $= 0 - \frac{1}{1+\alpha^2} (0 - u)$ $F_{S}(u) = \frac{u}{1+u^{2}}$

By inverse fourier Sine transform we have $f(x) = 2 \int_{T}^{\infty} F_{s}(u) \operatorname{Sinux} dgl$ put x = m $f(x) = e^{-imi} = e^{-m}$ $e^{-m} \cdot \frac{\pi}{2} = \int_{0}^{\infty} \frac{u}{4} \operatorname{ginum} du$ $\int_{0}^{\infty} \frac{u \sin m u}{1 + u^{2}} du = \frac{\pi}{2} \cdot e^{m}$ changing u to x i i principations poli $\int_{0}^{\infty} \frac{x \operatorname{Sinm} x}{1 + x^{2}} dx = \frac{\pi}{2} \frac{e^{-m}}{2} \qquad (1)$ Find the fourier sine transform of $\frac{e^{-\alpha x}}{x}$, $\alpha > 0$ 3 June 2017, Dec18 <u>Soin</u>; $F_{S}(u) = (f(x)) Sinux doc$ $F_{S(0)} = \int_{0}^{\infty} \frac{e^{-\alpha x}}{e^{-\alpha x}} \operatorname{Sinux} d c = 0$ use cannot evaluate they integral directly and hence we proceed as follows $\frac{d}{du} \left[f_{3}(u) \right] = \int \frac{e^{-\alpha x}}{e^{-\alpha x}} \frac{\partial}{\partial u} \left(sinux \right) dx$ $= \int_{D}^{\infty} \frac{e^{\alpha x}}{x} \cdot \cos ux \cdot x \, dx$

 $F_{g1u} = \int_{0}^{\infty} e^{-\alpha x} \cos \alpha x dx -$ $= \begin{bmatrix} e^{\alpha x} & (-\alpha \cos u x + u \sin u x) \end{bmatrix}^{\infty}$ $= 0 - \frac{1}{(-\alpha + 0)}$ $\frac{d}{du} \left[f_{3}^{2} u \right]^{2} = \frac{\alpha}{\alpha^{2} + u^{2}}$ by Integrating war to u on B.S we get $\int \frac{d}{du} F_{S}(u) \cdot du = \int \frac{a}{a^2 + u^2} du$ $F_{S}(u) = tarrituda + C$ TO Find C, put U=0 $F_{9}(0) = tam'(0) + C$ Fo(0)= 0 from () Folu) = tantu/a (i) Find the inverse fourier sine transform Dec of $\hat{f}_{S}(d) = 1 e^{ad}$, d > 0 201bBy data for = 1/e ad $\frac{sono}{2} \quad F_s[f(x)] = \hat{f}_s(x) = \int_{-\infty}^{\infty} f(x) \sin tx \, dx$ $f(x) = 2 \int_{T}^{\infty} \hat{f}_{s}(d) \operatorname{Sind} x d = 0$

= 2 for date sin doc dat 0.00.9. to X $\frac{d}{dx} \left[f(x) \right] = \frac{2}{\pi} \int_{0}^{\infty} \frac{d}{dx} \left(\frac{e^{-dx}}{\alpha \partial x} \frac{\partial G(n \alpha x)}{\partial x} \right) d\alpha$ $= \frac{2}{\pi} \int \frac{e^{\alpha \Omega}}{\sqrt{2}} \cos \alpha x \cdot x \int dx$ $= \frac{2}{\pi} \left(e^{-\alpha \alpha} \cos \alpha x \cdot d\alpha \right)$ 60 $= \frac{2}{\pi} \left[\frac{e^{-\alpha x}}{(\alpha^2 + x^2)} \left(-\alpha \cos^2 x + x \sin^2 x \right) \right]$ $= \frac{2}{\pi} \begin{bmatrix} 0 - 1 & (-a + 0) \end{bmatrix}$ $\frac{d}{dx} f(x) = \frac{2}{\pi} \frac{x}{x} \frac{q}{x^2 + x^2}$ Znt. co.r. to 2 tam 1/0 = 1 1+ 2/2 $f(x) = \frac{2}{\pi} \int_{a}^{a} \frac{d}{d^{2}+2^{2}} dx$ $f(y) = \frac{2}{\pi} \tan^{-1} \frac{x}{2} + C - \mathcal{P}$ To find C, put ic = 0 in @ f(0) = 0 + C 0=0+0=> 0=0 f (x) = 2/ tan x/a

Find the fourier Cosine tranyform op $f(x) = \begin{cases} x & \text{for } 0 < \infty < 1 \\ 2 - x & \text{for } 1 < x < 2 \\ 0 & \text{for } 0 < \infty < 1 \end{cases}$ myndy 2-x for 1xxx2 P HOLD Lo for x>2 Find the infinite fourier Conine transform of E22 TUT DIC (II) pownien cosine transform is given by Con: $F_c(u) = \int f(x) \cos u dx dx$ $F_{c}(u) = \int_{0}^{\infty} e^{-x^{2}} \cos ux \, dx$ we cannot evoluate the integral directly & hence proceed by follows. The process is called differ under the integral Sign. $dF_{\alpha} = \int_{-\infty}^{\infty} \partial \left(e^{x^{2}} \cos x \right) dx$ $= \int_{0}^{\infty} e^{-x^{2}} (-\sin ux \cdot x) dx$ $= \frac{1}{2} \int_{-\infty}^{\infty} ginux \int_{-\infty}^{\infty} f(-2x) \int_{-\infty}^{\infty} dx$ $2 dF_c = \int_{-2\pi}^{\infty} \sin u \pi \int_{-2\pi}^{2\pi} (-2\pi)^2 d\pi$ Integrate RHS by party we have = $\int \sin ux \left(e^{x}\right) \int \left(e^{-x^2}\right) \left(\cos ux \cdot u\right) dx$

classmate of Date MODULE - OH, Numerical Solution of ordinary differential equations of first order and first degree first degreet 689 Numerical methods for initial Volue problems Consider a differential equation of first order and first degree in the form dy = p(x, y) with the initial condition y(x_0)= yo dx i.e y= y at x= x This problem of finding y is called an initial Value problem. $\left(\right)$ Taylor's Series method Consider the initial value problem $\frac{dy}{dx} = f(x, y) \text{ and } y(x_0) = y_0$ The Sodution y(x) is approximated to a power Series in $x - \infty$, using Taylor's Series. 7) Then we can find the Value of y for Various Values of x in the neighbourhood of to. we have Jaylor's Series expansion y(x) about the point 20 in the form: $y(x) = y(x_0) + (x - x_0)y'(x_0) + (x - x_0)^2 y''(x_0) + \frac{2!}{2!}$ (2c - 20) 3 y !!! (20) + Here y'(xo), y"(xo).... denote the Value of the derivatives dy, dry, at to which of dp, dx, dx, at to which of Can be found by making use of the data

Broblem find @ Use Toylor's Series method to Dec terms at x= 0.1, 0.2, 0.3 Considering 8018 that upto the third degree given and y(0) = 1dy dæ Soile Taylor's Series expansion of y (20) is givon by $y(x) = y(x_0) + (x - x_0) y'(x_0) + (x - x_0)^2 y''(x_0) + (x - x_0) y''(x_0) + \frac{1}{31} y''(x_0) + \frac{1}$ By dota y (200)= 40=> 200=0 Yo=1 and y'= 202 + 42 $\frac{1}{2} \cdot \frac{y(x) - y(0) + (x - 0)y'(0) + (x - 0)^2 y''(0) + (x - 0)^3 y''(0)}{2}$ $y(x) = y(0) + xy'(0) + \frac{x^2}{2}y''(0) + \frac{x^3}{6}y'''(0) = 0$ we need to compute y'(0), y''(0), y''(0)Consider $y' = 2c^2 + y^2$ We initial value $y'(0) = 0^2 +$ (y = y'(x) y'(0)=1 Differentiating (2) we have $10 \cdot 1 \cdot 10$ oc y" = 2x + 2yy y"(0) = 2 (0) + 2 y (0) y' (0) = 0 + 2(1)(1)y''(0) = 2DUNG

classmate Differentiating (3) co. r. to x $y^{NI} = Q + Q \left[y y'' + y'.y' \right]$ $y''' = 2 + 2 [yy'' + (y')^2]$ -y"= 2+2 [y(0) y" (0) + [y'(0)]] $y''(0) = 2 + 2 (1)(2) + 1^2$ 1 (26)+ Substituting these values in (1) we have $y(x) = 1 + x(1) + \frac{x^2}{2}(2) + \frac{x^3}{6}(8)$ $y(x) = 1 + x + x^2 + H x^3$ This OB Called as Taylor's Serie approximation upto third degree and we need to put DC = 0.1, 0.2, 0.3 in (*) we have y(00) = 1+001 + (00) + 4(00) = 10113/1 $y(0\cdot 2) = 1 + 0\cdot 2 + (0\cdot 2)^2 + 4(0\cdot 2)^3 = 1 \cdot 2506$ y 10.3) = 1+0.3 + (0.3)2 + 410.3) = 1.426 find y at x=1.02 correct to five decimal places given dy=(xy-1) dx and y=2 at x=1 applying Taylor's Series method. 2) 8010

classmate Taylor's Serie expansion is given by $\frac{y(x) - y(x_0) + (x - x_0)y'(x_0) + (x - x_0)^2 y''(x_0) + (x - x_0)^3 y'''_1}{3!}$ By dota $y(x_0) = y_0, y(0) = 3p_{x_0} = 1$ $y_0 = 2$ and y' = dy = xy - 1dx $y(x) = y(0 + (x - 1)y'(1) + (x - 1)^2 y''(1) + (x - 1)^3 y'''(1) = 0$ Consider y'= xy-1 - @ y'(1) = (1) y (1) - 1 use initial + value , halse = (1) (2) - 1y'0=1_ Differentiate @ war to a y'' = xy' + y(1)ye initial value and y'll value y"(1) = (1) y'(1) + y(1) y"(1) = (1)(1) + 2 y"(1) = 3 inding a if at is 1.00 course Differentiate 3 w.r. to x y''' = 2cy'' + y'(1) + y''y" = xy" + 2y

classmate $y^{(1)}(1) = (1) y''(1) + 2y'(1)$ y'''(1) = (1)(3) + a(1)RA B 01 45 + 101 ym (1) = 5 CINSINE 7 need to find y(1.02) we put 20=1.02 in (?) y(1.02) = 2 + (1.02 - 1)(1) + (1.02 - 0)(3)+ (1.02-1) x 5 $2 + 0.02 + (0.02)^2 \times 3 + (0.02)^2$ x 5 2+0.02+0.0006 + 0.00006 y (1.02) = 2.020006 From Taylor's Series method, find ylo.1) 3 Considering apto fourth degree term if Satisfies the equation $dy = x - y^2$, y(0) = 1Sono Taylor's Series expansion is given $y(x) = y(x_0) + (x - x_0)y'(x_0) + (x - x_0)^2 y''(x_0) + (x - x_0)^3 y'''(x_0)$ $\frac{1}{2!} = \frac{1}{2!} \frac{1}{2!$ $+ (x - x_0)^{4} y^{4}(x_0) + \cdots$ By data i.e y (0) =) 20=0, yo=1 $y' = x - y^2$

Page () $y(x) = y(0) + (x-0)y'(0) + (x-0)^2 y''(0) + (x-0)^3 y'''(0) + (x-0)^4 y'(0)$ $\frac{\partial y}{\partial i} = \frac{\partial y}{\partial i} + \frac{\partial y}$ $y(x) = y(0) + xy'(0) + \frac{x^2}{2}y''(0) + \frac{x^3}{6}y'''(0) + \frac{x^4}{2}y''(0)$ $y' = x - y' - 0 \quad y'(0) = 0 - [y(0)]$ (2) $y' = y' - 0 \quad y'(0) = 0 - [y(0)]$ Consider .11:17 $y'(0) = 0 - 1^2 = -1$... y'(0) = -1E) (1 - 60 - 1) + (1) Differentiate 2 co. r. to x y'' = 1 - 2yy' - 0; y''(0) = 1 - 2y(0)y'(0)y''(0) = 1 - 2(1)(-1)y(x) g"(0) = 1+2 8001 y (70) y''(0) = 3Åt Acore from 11 Diff, 3 w.r. to 20 y 10 y''' = 0 - 2 [9y'' + y'y']90 07 100 $y''' = -2[yy'' + (y)^2] - @$ $y'''(0) = -2[y(0)y''(0) + \{y'(0)\}]$ = -2[(1)(3) + (-0)]Dec y''(0) = -2[3+1]2017

classmate -0) y'(0) y" (0) = -8 Dell'Ind Diff. W w.r. to x a $y^{(4)} = -2$ y" + y" y' + 2y'y" $y^{(4)}(0) = -2 \left[y(0) y'''(0) + 3 y'(0) y''(0) \right]$ ()(-8) + 3(-1)(3)- 2 +2[-8-9 = - 2 x - 17 y⁽⁴⁾(0) = 34 Substitute au theje valuy In $1 + 2(-1) + \frac{x^2}{3} + \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^3}{12}$ y(x) $= 1 - x + 3x^{2} - 8x^{3} + 17x^{4}$ y(n) we need to find y(0.1)put x = 0.1 in Ryf $y(0.1) = 1 - (0.1) + 3(0.1)^2 - 8(0.1)^3 + 17(0.1)^4$ = 1-0.1 +0.015 -0.00 30 + 0.00014 y (0·1)= 0·91384 method to find y(4.1) and y(4)=4 Taylor's Series that pec given 2017 da x+y

Scanned with CamScanne

classmate Sane Taylor's Series expansion y given by $y(x) = y(x_0) + (x - x_0)y'(x_0) + (x - x_0)y''(x_0) + (x - x_0)y'''(x_0) + \cdots$ By data y(x0) = y0 y(4) = 4i.e. $x_{2}=4$ $y_{0}=4$, $y'=\frac{1}{x^{2}+y}$ $\frac{y(x) - y(4) + (x - H)y'(4) + (x - H)^2 y''(4) + (x - H)^2 y'''(4)}{2}$ Consider y'= 1 x+y 51593 y'(x2+y) =1 -- 2 Substituting the Initial values y'(H) [H + y(H)] =18 [16 + H] = 1 = y'(H)y'(4) [20] =1 =) y'(4) = 1 = 0.05 y'(H) = 0.05] => 20 Diff. (2) w.g. X $\partial x + y' J + (x'+y) y''$ 3 Subgtituting initial values and value of y'u) 2 00 $y'(u) [2(u) + y'(u)] + [4^{2} + y(u)] y''(u) = 0$ 1283.1 0.05 [8+0.05] + [16+4] y"(4) =0 0.0025 + 20y"(4) =0

classmate 204"(4) = -0.4025 y"(4) = -0. 4025 (y"(4) = -0.020125) beyin can be an and degree Diff. (co.r. to DC neglected ... values of derivative are Very small x2+y y"+y"[2)(+y] y"] + [2x+y'] y" + 2y' + y'y" + 2xy" + y'y" + x2y" + yy" + 2xy" + 3y Hxy" + 3y'y" + 2y' + x'y" + yy" = 0 $\begin{array}{l} H(H) y''(4) + 3 y'(4) y''(4) + 2 y'(4) + (4)^2 y'''(4) \\ + y(4) y'''(4) = 0 \end{array}$ 16(-0.020125) + 3(0.05)(-0.020125) + 2(0.05)+ 16 y'''(u) + (H) y'''(u) = 0-0.22502 t20y"(4)=0 20411(4) = 0.22502 y !!! (4) = + 0.01125 put all these values in 0 $y(x) = H + (x - H)(0.05) + (x - 4)^{2} (-0.020125) + (x - 4)^{2} (-0.0105)$ we need to find y14.1) put x=4.1in (*) $y(H \cdot I) = H + (H \cdot I - H)(0 \cdot 05) + (H \cdot I - 4)^{2} (-0.020125) + (H \cdot I - 4)^{2} (-0.01125) + (H \cdot I - 4)^{2} (-0.01125)$

Date (y14.1) = 4+0.005 - 0.0001 - 0.0000018 y [u.1)= H.00489 3 @ Employ Taylor's Series method to find y at x=0.1 and 0.2 correct to four Dec places of decimal in Step Size of 2017 given the linear differential equation dy - &y = 3e² whose solution passes through the origin. Also find y (0.1) and y (0.2) by analytical method B Compute y10.1> Soine By data y(0) = 0 DG=0 40=0 -2y = 8ex = 3et +24 (1) 1110 (11) $y(x) = y(0) + (x - 0)y'(0) + (x - 0)^{2}y''(0) + (x - 0)^{3}y'''(0)$ y (x) = y(0) + xy'(0) + x y"(0) + x y"(0) - () Stepo: we need to find y10. 2 y"(0) + 6 y"(0) - () Consider y'= 3et + 24 ye initial conditions - 2 au thele y'(0) = 3e° + 2y(0) 21 4 19 Y'(0) = 3(1) + 2(0) 14'(0) = 3;

Diff. @ or y' w. r. to x classmate y"= 3ex + 2y' - 3 we initial conditions & value of y'(0). y"(0)=fe" + 2 y'(0) y''(0) = 3(1) + 2(3) (8.0) = 500 = 5 to 2 Diff. @ w.r. to x y" = 3ex + 2 y" y"(0) = 3e° + 2y"(0) y" (0) = 3(1) + 2(9) y"(0) = 21/ we need to find ylo.1) Now eqn O becomes $y(x) = 0 + 3x + \frac{x^2(9)}{2} + \frac{x^3(3)}{6} - \oplus$ $y(0.1) = 0 + 3(0.1) + (0.1)^{2}(9) + (0.1)^{3}(21)$ y10.1) = 0.3 + 0.045 +0.0035 y10.1) = 0.3485 Step D: coe shall find y (0.2) y(0·1) = 0.3485 i.e 26=0·1 yo= 0.3485 Taylors Series expanyion is

classmate $y(x) = y(x_0) + (x - x_0)y'(x_0) + (x - x_0)^2 y''(x_0) + \frac{(x - x_0)}{3!} y'''(x_0) + \cdots$ y(x)= y(0.1) + (x-0.1)y'(0.1) + (x-0.1)2 y"(0.1) + (x-0.1)y" _ (4') Confider y'= 3e x + 2y - 6 $y'(0.1) = 3e^{0.1} + 2y(0.1) = y'(0.1) = 3e^{0.1} + 2(0.3485)$ y (001) = HOO125/1 Diff (5) 00.9. to X y"= 3e + 2y' @ y" (0·1) = 3e^{0·1} + 2 y'(0·1) => y"(0·1)= 3e^{0·1} +2 (H·0125) y" (0.1) = 11.3405/1 Diff 6 0.9. to X y" = 3e x + 2 y !! $y'''(0 \cdot 1) = 3e^{0 \cdot 1} + 2 y''(0 \cdot 1) = y''(0 \cdot 1) = 3e^{0 \cdot 1} + 2 (11 \cdot 3405)$ y" (0·1) = 25.9965 /1 put au theje values in (4) y(x)= p: 3485 + (x-0.1) (4.0125) + (x-0.0) (11. 3405) + (x-0.1)3 25.9965 2 we need to find y (0.2), So put x=0.2 4(0.8)=0.3485 + (0.2-0.1) (4.0125) + (0.2-0.1)2 (11.3405) + 10.2-0.12 × 25.9965

classaute y(0.8) = 0.9485 + (0.1) (4.0125) + (0.1) (11.3405) + (0-1)3 (25.9965) = 0-3485 +0-40125 + 0.0567085 +0.00 4332 = 0.81078 y100) 4 0.8108 Thu8 Selation by analytic method of the form dy 1 Py = 07 04 - 2y = 30 y where p=-2, n=3et Solution: ye spax spax dx + C yes-2dx = (3ex c)-2dx dx +C $ye^{-2x} = \int 3e^{x}e^{-2x} dx + C$ $= \int 3e^{-x} dx + C$ $y = -3e^{-x}$ ye^{-2x} ye=2x = 3 ex + y=-3e + ce22 13 general Solution apply initial condition ye-2x $= -3e^{-x} +$ g(o)=0 in the above equation = -30° + C y (0) = - 3e° + ceo 0 = -3 + C C=3 = -3e²e² + ce²

classmate put C=3 in $y=-3e^{2}+ce^{2}$ $y = -3e^{\alpha} + 3e^{22\alpha}$ 00.201 2(6-9) = 3(e^{2x} - e^{2c}) is the solution my find y (0.1) and y (0.2) So det in the above soin $y(0 \cdot i) = 3(e^{2(0 \cdot i)} - e^{0 \cdot i})$ y(0.1) = 0.34869 y 10.17 = 0.3487/ pat x=0.2 in the above solution y (0.2) = 3/e2(0.2) - e0.2) = 0.81126 yco.2)=0.8113/1 by analytical method 1 set da 4 (6) Using Taylor's Series method, obtain the Valuy of y at x=0.1, 0.2, 0.3 to four Significant figures if y satisfies the equation y"= - xy given that y'= 0.5 and y=1 when 20=0 taking the first five terms of the Taylor's Series expansion 80100 Taylor's Beries expansion y given by

classmate $y(x) = y(x_0) + (x - x_0) y'(x_0) + (x - x_0) y''(x_0) + (x - x_0) y'''(x_0) + (x - x_0) y'$ By data x=0; y=1 y'=0.5 $y'' = -\infty y$ put x=0 in above formula = (19) $y(y(x) = y(0) + xy'(0) + \frac{x^2}{2}y''(0) + \frac{x^3}{6}y''(0) = 0$ Consider y"=-xy - 2 y''(0) = -(0)(1) = 0 = y''(0) = 0egn D. W. r. to x y''' = - [xy' + y(1)]y''' = -xy' - y = 3y'''(0) = -(0) y'(0) - y(0) $y^{((0))} = -(0)(0.5) - 1$ y"(0)= -1/1 put all these values in O $y(x) = 1 + x(0.5) + \frac{x^2}{8}(0) + \frac{x^3}{6}(-1) - (*)$ NOW we need to find y(0.1), y(0.2) Ey(0.3) $Y(0 \cdot 1) = 1 + (0 \cdot 1)(0 \cdot 5) + (0 \cdot 1)^{2}(0) + (0 \cdot 1)^{3}(-1)$ y (0.1) = 1.0498 put x=0.2 in (*) $\frac{y(0\cdot 8)}{2} = 1 + (0\cdot 8)(0\cdot 5) + (0\cdot 2)^{2}(0) + (0\cdot 2)^{3}(-1)$ y (0.2) = 1.0986

classmate $y(0.3) = 1 + (0.3)(0.5) - (0.3)^2(0) + (0.3)^3 x - 1$ 1+ 0.15-0-0.0045 =1-1455 = ·· y(0·1) = 100498, y(0·2) = 100986 y(0.3) = 1-1450 Ð Use ray 10 r's Senies method to solve y'= x2 + y in the range 0 5 x 40.2 by taking stepsize h=0.1 given that y=10 at x=0 initially considering terms upto the fourth degree. Soins In this problem Since the step size is specified as Oel, the problem hay to be done in two Stages we have to first find yloin) and we this oy the initial Condition to find ylo.2) Taylor's Series expansion & given by + (x-x0)^H y^H(x0) + 7 Stoge By data $y' = x^2 + y$, $x_0 = 0$ $y_0 = 10$ y'(0) = 0° + y(0) ye initial conditions y'(0) = 0 + 10y'(0) = 10 p210008

classmate Differentiating y' w.r. to se y'' = ax + y'y"(0)=2(0)+y'(0) => y"(0)=0+10 => y"(0)=10/1 Dipf. y" co.r. to x y" = 2 + y" y'''(0) = 2 + y''(0) = y y'''(0) = 2 + (10) = y''(0) = 12/10. y" co. r. to x Y=0+ y" y"(0) = 0 + y" (0) => y"(0) = 12/1 Now we have to find y at x=0.1 So put x=0.1 worth x=0 (*) become & $y(0.1) = y(0) + (0.1-0)y'(0) + (0.1-0)^{2}y''(0) + \frac{1}{2}y''(0) + \frac{1}{2}y'''(0) + \frac{1}{2}y$ $\frac{(0 \cdot 1 - 0)^{3} y''(0)}{8} + \frac{(0 \cdot 1 - 0)^{4}}{24} y''(0)$ $y(0.1) = 10 + (0.1)(10) + (0.1)^{2}(10) + (0.1)^{3}(12)$ + 10.124 (12) Dannan (18) 10+1+0.05+0.002+0.0005 y(0.1) = 11.05205 \$ 11.052 I Stoge: Now take 26=0.1, 40 = 11.052 we have $y' = x^2 + y$

classmate we initial conditiony Y'(0.1) = (0.1)2 + 11.052 = 11.062 => Y'(0.1) = 11.062 Digy' w. r. to x y"= 2x+y'; y" (0·1) = 2 (0·1) + y'(0·1) => y" (0·1) = 0·2 + 11·062 y"(0.1) = 11.262// Diff, y" co. r. to 90 y" = 2 + y" y"(0.1) = 2 + y"(0.1) => y" (0.1) = 2 + 11.262 y " (0·1) = 13·262/1 y" co. r. to x Diff y" = 0 + y" y"(0.1) = y" (0.1) => y"(0.1) = 13.262/1 we have to find yco. 2) NOCO i.e y cut x=0.2] put DC=0.2 with 20=0.1 80 @ become y(0.8) = y(0.1) + (0.2 - 0.1) y'(0.1) + (0.2 - 0.1) y"(0.1) + (0.2-0.1) 3 y" (0.1) + (0.2-0.1) y"(0.1) H! 11.052 + (0.1) 11.062 + (0.1) (11.262) + 10.0 (13.2 + 10.124 × 13.262 2

classmate 11.052 + 11062 + 0.05631 + 0.00221 + 0.000055 y (0.2) = 12 · 21677 They y(0.1) = 11.052 and y(0.2) = 12.21697 Use Taylor's Service method to obtain a power 8 Series in (x-H) for the equation $5x dy + y^2 - \vartheta = 0$ $2c_0 = H$, $y_0 = 1$ and use it to find y at $x = H \cdot 1, u \cdot 2$, $u \cdot 3$ correct to four decimal places. Soino Taylog's Serving expansion is given by $y(x) = y(x_0) + (x - x_0)y'(x_0) + (x - x_0)^2 y''(x_0) + (x - x_0)y''(x_0)$ 3! $2_0 = H$, $y_0 = I$ By data $y(x) = y(H) + (x - H)y'(H) + (x - H)^{2}y''(H) + (x - H)y'(H)$ 80 Conjider 5xy' +y2-2'=0 -Substitute initial Values we obtain NOTE: y'= y'(x) 5(4) y'(4) + (y(4)) - 2 = 0 20y'(4) + (1)2 - 2 = 0 20y'(4) = 1 y'14) = 1/20 = 0.05 g'14) = 0.05/1

classmate Diffy. @ co.r. to x 5[xy''+y'xi]+[yy'-0]=05 [xy" + y] + [2yy'] = 0 - 3 initial conditiony 5 [(H) y"(4) + y'(4) + [2y(H) y'(4)] =0 5 [HY (H) + 0.05+ [2(1)(0.05)] =0 Doy"(4) + 0.25+0.1=0 80y''(4) + 0.35 = 080y"(4) = -0.35 y" (4) = -0.0175/1 Since the Value of the Second divivative iffeif y small enough we shall approximate up to second degree only Suby. all value in O $y(x) = 1 + (x - H)(0.05) + (x - 4)^{2}(-0.0175) -)$ Now we have to find y at x= uo1, uo, u.3, u.3 So, put x=u=1 in Di + (1) $y(H,1) = 1 + (U,1-4)(0.05) + (U,1-4)^{2} (-0.0175)$ y(H,1) = 1.0049/1put x=4.2 in @ y(u.g) = 1+(H.g-4)(0.05)+(U.g-4)(-0.0175)

elassanda y(u.0) = 1.0097/1 put x=u=3 in @ y(4.3) = 1+ (4.3-4) (0.05) + (H.3-4)2 (-0.0195) y14.3) = 1.0142 OP Diff @ w. r. to x 11 you consider dus consider, duivation will rot change 5[xy" + y" + y"] + 2 [yy" + y'y]=0. 5[xy" + 2 y"] + 2 [yy" + (y)] =0 5 [(4) y" (4) + 2 y" (4)] + 2 [y(4) y" (4) + (y'(4))] =0 5 [H y" (H) + 2(-0.0195)] + 2 [() (-0.0175)+ (0.05)]=0 20y"(H) -0.175 + (-0.035) + 0.005 =0 20 y 11 (4) - 0.205=0 y"(4) = 0.205 80 y" (u) = 0.01025/ (3) 13 put all there in D 11 $y(x) = 1 + (x - u)(0.05) + (x - u)^{2} (-0.0175) + (x - u)^{3} (0.01025)$ we need to find y at x = u.1, u.2, u.3 6 y(x) - y(u.1) = 1.00049y(u.2) = 1.0097y(u.3) = 1.0142

classmate Modified Euder's Method Consider the Pritial value Problem dy - y (30, 4) ; y (96) = yo we need to find y at x, = x, th we first obtain y(x,) = y, by applying Euler's formula and this value is regorded as the initial approximation for y mually denoted by y(0) also called a provided by y(0) also called of predicted value of y. Euler's formula is given by $y_{1} = y_{0} + h f(x_{0}, y_{0})$ Since the accuracy is poor in this formus the desired degree of accuracy by the following modified Euler's formula where the successive approximations are denoted by y, (1), y, (2), y, (3)... etc y(1) = y + h f(xo, yo) + f(xi, y(0)) $y_{1}^{(2)} = y_{0} + \frac{h}{2} \left[f(x_{0}, y_{0}) + f(x_{1}, y_{1}^{(0)}) \right]$ $y_{1(3)} = y_{0} + \frac{h}{2} f(x_{0}, y_{0}) + f(x_{0}, y_{1}^{(2)})$ Euler's formula and outed's modified Euler's formula jointly caud of Euler's predictor and corrector formula

classmate Problems @ Given dy = 1+ 4, y=2 at x=1 find the 0 Dec approdumate value of y at x=1. H by taking 2018 Step Size h=0.2 applying modified Euler's method Also find the Malue of y at x=1.2 and 1.4 from the analytical Solution of the equation (Find y(1.2) in two Steps. problem hay to be done in 2 stays The TStage: Solo $x_0 = 1, y_0 = 2 dy f(x, y) = 1 + y h = 0 + 2$ $x_1 = 2c_0 + h = 1 + 0 \cdot 2 = 1 \cdot 2 \Rightarrow 2c_1 = 1 \cdot 2$ y (x(1) = y = y (1.2) =) NOW f (>(0, yo) = 1+ yo = 1+ 2 = 1+2 = 3 £ (D(0, Yo) = 3 we have Euler'n formula 4(0) = yo + h f (xo, yo) = 2+0.2 (3) = 2.6/1 we have modified Euler's formula Y(1) = Yo + p + (xo, yo) + f(x, y'o)) $= 2 + \frac{0.2}{2} = 3 + \left\{1 + \frac{y_{i}^{(0)}}{x_{i}}\right\}$ = 2+0.1 3+1+2.6

classmate Date y = 2. 61666 f (xo, yo) + p (xi, y(1)) 4(2) yo+ anethod { 1+ y(1) 2 \$ 1+ x, J 2+0.2 1 all 3819 41017 +1+2.61666 2+0.1 3 y (3) = 2.61805 f (xo, yo) + f (x1, y, (2)) y (3) = y + h 1+ y,(2) 2 90, J =2+10.1 3 2 3+1+ 2.61805 Ath Lo = 2+001 = 2 . 61817 1 (0)C1 f (xo, yo) + f (x, y, (3)) y (4) = 4. + h (111) C) + 11 + 19 $3 + \{1 + y_1^{(3)}\}$ = 2 + 0.2 = 2+0-1 3+1+2-61817 1.2 61212 - 2.61818 (0)12 . . . 1 . y(1.2) = 2.61818

classmate Required Solution for (b) is 4(2) = y(1.2) = 2.61805 I stage: we repeat the process by taking y(1.2) = 8.61818 of the initial condition 200 = 1.2 Yo = 2.61818 1818 1 10 1 81818 f (200, 40) = 1 + 40 = 1 + 2.61818 = 3.1818 p (200, yo) = 3.1818, 20, = 200 + h => 20, = 10H, y(x,)=y, we have surry formula = y(1·H)=9 y (0) = yothf (xo, yo) = 8.61818 + (0.2) (3.1818) = 3.25 H54/1 Now love have modified Euler's formula y(1) = y + h (200, yo) + f(201, y(0)) = 2.61818 + 0.1 [3.1818 + 1 + 3.25454 1.4 = 3-2688 $y(2) = y + h + (100, 90) + f(x_1, y(1))$ $= 2.61818 + 0.2 \qquad 3.1818 + 1 + <math>\frac{1}{2}$ = 2.61818 + 0.1 3.1818 + 1+ 3.2688 10 H = 3.2698

CLASSMALE 1032 - yo+h [f(xo, yo)+ f(xo, y, 03)] $= \frac{2 \cdot 61818 + 0 \cdot 2}{8} \left[\frac{3 \cdot 1818 + \left(1 + \frac{y}{2}\right)^2}{x_1} \right]$ - 2.61818 + 0.1 [3.1818 + 1 + 3.8698 2.61818 + 0.1 [3.1818 + 1 + 2.3355 71429 3.2699 81813 They y(1.4) = 3.2099 Now, Let us find the analytical Solution of equation $\frac{dy}{dz} = 1 + \frac{y}{z} \quad \text{or } \frac{dy}{dz} = \frac{y}{z} = 1$ whose solution is given by yc Spdx = fore dx + c here p=1-1/20 8. 07=1 81813.8 $e^{\int p \cdot dx} = e^{\int -\frac{1}{x} dx} = e^{\int \frac{1}{2} \frac{1}{x} dx} = e^{\int \frac{1}{2} \frac{1}{x} \frac$ Bolution become & 1233 + + (at ak) + y. 1/x = ∫ 1. 1/x dx + c = ∫ 1/x dx + c $y_{/x} = 109 x + c - x$ apply the initial condition i.e $y = 2 \in X = 1$ coe have. $2_1 = \log(1) + C = 2 = 0 + C \Rightarrow C = 2_1$

CLASSMALE put c value in @ (1 or the start a court 4/2 = log x + 2 Facin Euler & formula y = x(uogx + a)Thig is the analytical solution of given initial Value problem Now by putting oc=1.2 & 1.4 in the above $we get y = 1 \cdot 2 (log_e(1 \cdot 2) + 2)$ y = 2.61878y = 1.4 (uog(1.4) + 2)y = 3.27106Deving modified Euler's method find y at $\infty = 0.2$ given $\frac{dy}{dx} = 3x + \frac{1}{2}y$ with y(0) = 1Dec taking h=0.1. perform three iterations at each 2017 Step. 2000 + 200 + 200 200 H 1.1.1 Soil we need to find y(0.8) by taking h=0.1The Problem hay to be done in two stages Istages By data $x_0=0$, $y_0=1$ h=0.1 $\frac{dy}{dx} = f(x, y) = 3x + 1 y$ $f(x_0, y_0) = 3(0) + 1(1)$ $f(x_0, y_0) = \frac{1}{2} = 0.5$ $x_{f} = x_{f} + h = 0 + 0 \cdot 1$ $x_{f} = 0 \cdot 1$ E#30 - 1 1

CLASSMAL y (xi) = y, = y(0. 1) = 9 (30 or autor From Euler's formula $y^{(o)} = y_0 + h \not\in (x_0, y_0)$ y">- 1.05 + (-1) (201) (2-1) we have modified Euler's formula Y (1) = Yo + h (200, Yo) + f (00, 9,10) $0.5 + 3x, + \frac{y_{1}^{(0)}}{2}$ 1 ban + 2.1 1+ 0.05 [0.5 + 3(0.1) + 1.05 NO A DO $\frac{1+0.05 \left[0.5+0.3+0.525\right]}{(1000)}$ empute 3 4.(2) = 70 + 12 + f(xo, yo) + f(x, y(0)) $= 1 + \frac{0 \cdot 1}{2} = 0 \cdot 5 + 3x_1 + \frac{y_1(0)}{2}$ $= 1 + 0.05 \left[0.5 + 3(0.1) + 1.06625 \right]$ = 1+0.05 [0.5+0.3+0.533125] - 1.06665 41.0657

CLASSMALE y. (2) = Yo + h. [f(xo, yo) + f (20, y, (2))] = 1 + 0.05 [0.5 + 320, + 4,00] = 1+0.05 [0.5+3(0.1)+1.0667] + 0.05 0.5 + 0.3 + 0.5335 = 1.06666 - 1.0667 They 1 y 10 . 1) = 1.0667 370 + 60001 . I stage: Now, Let 20=0.1, yo=1.0667. f(x, y) = 3x + y have p(xo, yo) = 3(00) + 100667 = 0.83335/1 $x_{i} = x_{0} + h = 0 \cdot a^{i}$, $y_{i} = y(x_{i}) = y(0 \cdot a) = ?$ From Euler's formula we obtain 000 y (0) = y, +hf (200, yo) = 1.0667 + 0.1 (0.83335) = 1.150035 41.15/1 From modified Euler's formula $y_{1}^{(1)} = y_{0} + \frac{h}{2} \left[f(x_{0}, y_{0}) + f(x_{1}, y_{1}^{(0)}) \right]$ 1.0667 + 0.1 [0.83335+3x, + 4,"] = 1.0667 + 0.05 [0.83335+3(0.8)+ 1.15 $y_{i}^{(1)} = 1.1671$

4(1) = Yo + b [f(200, Yo) + f(x1, Y, ())] = 1.0667 + 0.05 [0.83335+ 300, + 4,"] = 1.0667 +0.05 [0.83335+3(0.2) + 1.167] y,"= 1.1675 $y^{(3)} = y_0 + h \left[f(x_0, y_0) + f(x_1, y_1^{(2)}) \right]$ $= 1.0667 + 0.05 \left[0.83335 + 3.2, + 9, (2) \right]$ = 1.0667 + 0.05 [0.83335+3(0.2)+1.1675]y(3) = 1.1675 They ylo. 2) = 1.1675 Using modified Euler's method find ylo. 2) Correct to four decimal places bolving the 3 equation $\frac{dy}{dx} = x - y^2$, y(0) = 1 taking h=0.1June 9018 ·· 0667+ 0.1 (0.82335) 1 1 1 5 0 0 3 5 1191214 from modified Eulen's formula (1) = yo + b [\$(xo, yo) + \$(xr, y, b) 1" 0667 + 001 0.83335 + 37. + 4

classmate Using modified Euler's method find y(20.2)and y(20.4) given that $dy = \log_{10} \left(\frac{x}{y}\right)$ R with y(80)=5 taking h=0.2 we shall fight find y (20.2) and ye this value to find y (20.4) Solo I stage: By data 20=20, yo=5 and h=0.2 $f(x, y) = \log (x), f(x_0, y_0) = \log (20/5)$ f (xo, Yo) = 109 (H) = 0.6020500 1 (xo, 40) = 0.6021 $x_1 = x_0 + h = 20 + 0.2 = 20.2$ y(x1)=y= y(20.2)=9 from Euler's formula: 4,10) = yothf (20, 40) 4101 = Yo + hf (xo, yo) = 5 + 0.2 (0.6021) By Euler's modified formula $y_{(1)} = y_{0} + \frac{h}{2} \left[f(2c_{0}, y_{0}) + f(x_{1}, y_{1}^{(0)}) \right]$ = 5 + 0.2 [0.6021 + 109 (24)]= 5 + 0 - 1 [0.6021 + log (20.2) y:1) = 5.1198 and 1 100 + 9 110

 $y_{1}^{(2)} = y_{0} + \frac{h}{2} \left[f(x_{0}, y_{0}) + f(x_{1}, y_{1}^{(2)}) \right]$ $= 5 + 0 \cdot 1 \left[0 \cdot 6021 + log_{10} \left(\frac{\pi}{y_{10}} \right) \right]$ $= 5 + 0 \cdot 1 \left[0 \cdot 6021 + 109 \left(\frac{20.2}{5 \cdot 1198} \right) \right]$ = 5.1198 (novi); birt of why They y (20.2) = 5.1198 I Stage: det 20= 20-2 40= 501198 f(x, y) = dog(x/y) $f(x_0, y_0) = \log \left(\frac{a_0 \cdot 2}{5 \cdot 1198}\right)$ f (xo, yo) = 0.59609 - (8.08) Dc, = xo +h = Dool, y(x)= 4, = y(Do. W)= 9 From Ewley formula $\begin{array}{l} y^{(0)} = y_0 + hf(x_0, y_0) \\ = 5 \cdot 1198 + 0 \cdot 2 (0 \cdot 59609) \end{array}$ = 5. 2390 y 5.239 - (at a so a By modified Euterg formula $y_{i}^{(1)} = y_{0} + h \left[f(x_{0}, y_{0}) + f(x_{1}, y_{i}^{(0)}) \right]$ = 5.1198+0.1 [0.59609+ log (x1) = 5.1198 + 0.1 0.59609 + dog (00.4)

classmate Date y!" = 5.2384 4,(2) = yo + h, [f(200, yo) + f(201, y,(1))] = 5-1198 + 0-1 [0.59609 + wog, (x1/410)] = 5.1198+0.1[0.59609+ dog, (20.4) = 5.2384 + (ob. 75) % They y (20.4) = 5.2384 E + 1 /10+1 (5) Use modified Euler's method to solve dy = x + [vy] in the range 0 5 x 50.4 rune by taking h= 0.2 given that y=1 at x=0 2017 Dec initially 18 we need to find ylo. 2) & ylo. 4) with h=0.2 80100 I stage: By data xo=0 yo=1 f(x,y) = x+vy, h=0.2 where the modulary sign indicates that we have to take only the the value of Vy f(xo, yo) = 2co + lyo = 0 + 1 = 1 ·· f (>co, yo) = 1 29 = 20 + h = 0.2 => 24 = 0.2 y (x,) = y = y (0.2) = ? From Euler's formula y(0) = y, + hp (x0, y0) = 1 + 0.2 (1) 1. 809831 = 1.2 1 16 0 = all 1.0

CLASSMALE By modified Guler's formula y(1) = yo + h [f(xo, yo) + f(x, y, ")] 1.11 $= 1 + 0.2 [1 + x_1 + vy_1^{(0)}]$ 1+0.1 1+0.2+1.2 = 1. 2295 $y(x) = y_0 + h [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ $= 1 + 0 + 1 + x_1 + \sqrt{y_1^{(1)}}$ = 1+0.1 [1+0.2+1.2895 = 1+0.1 [1+0.2+ VI.2295] xb 10 =1 1. 2 3088 NVA 4(3) = yo + h/2 [f(xo, yo)+f(x), y(3)] = 1+ 0-1 [1+2, + Vy(2)] = 1+0.1 [1+0.2+1.23088] BRASA = 1.2309 and the the the $y_{1}^{(1)} = y_{0} + h/2 [f(200, y_{0}) + f(200, y_{1}^{(3)})]$ = 1+0·1 [1+0·2+ 1.2309] = 1.2309 They y(0.2) = 1.2309 minutes $\frac{\mathbb{Z}}{\mathbb{Z}} \stackrel{\text{Stage}}{=} \frac{1}{1000} \det \mathcal{X}_0 = 0.2 \quad \text{y}_0 = 1.9309}{f(x, y) = x + \sqrt{y}} = 0.2 + \sqrt{1.2309} = 1.309 \text{ AS}}{f(x_0, y_0) = x_0 + \sqrt{y_0} = 0.2 + \sqrt{1.2309} = 1.309 \text{ AS}}$

classmate f(x0, y0)= 1.3095 $10 \mathcal{D}_{i} = \mathcal{D}_{o} + h$ (x, = 0.2+0.2 => x,=0.4 white and ($y(x_1) = y_1 = y(0+4) = ?$ From Eulers formula $y^{(0)} = y_0 + h f(x_0, y_0)$ -1.2309 + (0.2) (1.3095) = 1-4928 prom modified Euler's formula y, (1) = yoth [f(xo, yo) + f(oc1, y, (0))] = 1.2309+0.2 [1.3095+ x,+ V y(0)] = 1.2309+0.1 1-3095+0.4 + 1. H928 = 1.5240 $y_{1}^{(2)} = y_{0} + h \left[f(x_{0}, y_{0}) + f(y_{1}^{(0)})\right]$ = 1.2309+0.1 1.3095 + x1+ V y(1) = 1.2309 +0.1 1.3095 + 0.4 + 1.5240 = 1.2309 + 0.1 [1.3095 + 0.4 + V1.5240 = 1.5253 00 HI 2600 H y (3) = yo + h [f(>co, yo) + f(>c1, y,(2))] 8409C : 4(2) = 1+ 0.08 = 1.2309 + 0.1 1.3095 + 20, + V 4(2) = 1.2309 + 0.1 1.3095 + 0.4 + VI.5253 = 1.5253 212012 (200) They y(0-4) = 1-5253

classmate Date 3608+1 = (08 Do yourself © Use modified Euler's method to compute y(0.1) given that dy _ x² + y y(0) =1 by taking h= 0.05 dx considering the accusacy upto two approximation in each step. and we this value to compute y (0.05) Firgt I Stage: By data 20=0, yo=1 $f(x, y) = x^2 + y, h = 0.05$ $f(x_0, y_0) = x_0^2 + y_0 = 0^2 + 1$ p(xo, yo) =1 DC, = DC, th = 0+0.05 \$ 2, =0.05 y(x1) = y, = y10.05) = ? From Euler's formula $y_{1}^{(0)} = y_{0} + hf(x_{0}, y_{0})$ 0, 2 = 1P+ 0.05 (1) 0x) + 1 + 1 + 1 = 1.05/1 From modified Euler's formula $y_{i}^{(1)} = y_{0} + h \left[f(x_{0}, y_{0}) + f(x_{1}, y_{i}^{(0)})\right]$ $= 1 + 0.05 \left[1 + (2c_1) + y_{1}^{(0)} \right]$ 1 PSUND $y_{i}^{(1)} = 1 \cdot 0.035 \left[1 + (0.05)^{2} + 1.05 \right]$ $\frac{y^{(2)}}{y_{1}} = 1 + 0.085 \left[1 + (0.05)^{2} + y_{1}^{(1)} \right]$ = 1 + 0.085 [1+ (0.05)^{2} + 1.05 = 1+0.025 [1+ (0.05) 2+1.0513] E 1.0513 1.3+05564 They y (0.05)=1.0513 202 - 1 - 1 - 1 - 5 2 5

Scanned with CamScanner

classmate 1 stage: Now let 200 = 0.05, yo = 1.0513 (x, y) = x + y; p(x0, y0) = x2 + y0 = (0.05) + (1.0513) f (200, 40) = 1.0538A x, = xoth = 0.05+0.05=0.1 = x,=0.1 y(x,)= y,= y(0.1)=9 and the close Now, By Euler's formula and south and 4 (0) = 40 + hf (000, 40) = 1-0513 + 0.05 (1-0538) = 1.10399/1 Now, From modified Euler's formula y(1) = yo + h [f(xo, yo) + f(xo, y, (0)). = 1.0513 + 0.05 1.0538 + x, + y, (0) = 1.0513 + 0.025 1.0538 + (0.1) + 1.10399 = 1.10389 y," - 1. 10389/1 y,(3) = 1:0513 + 0.025 [1.0538 + (0.1) + 1.10389 = 1.10549 Sind Puller y(3) = 1.0513+0.025 [1.0538+10.0 + 140549 = 1.1055 / 2001 100000 414) = 1.0513 + 0.095 [1.0538 + (0.D+1.1055] = 1.1055/1 They y (0.1) = 1.1055/1 Do yourgelf wing Guler's predictor and corrector formula Solve dy = at at at a given that y(0)=) dx

CLASSMALE Date An: 20=0, yo=1 f(200, yo)= 200+ yo = 1 x, = xo+h = 0.2 (2+1x = (2 x)) $\mathcal{Z}_1 = \mathcal{D}_0 + h = h = \mathcal{D}_0 - \mathcal{D}_0$ h=0-2-0 4(20)= 4, = 4(0.2)=9 we have euler's formula y (0) = y + hp (x 0, y 0) $= 1 + (0 \cdot 2) (1)$ = 1.2/1 we have from modified euler's petomula $y_{i}^{(i)} = y_0 + \frac{h}{2} \left[f(0, y_0) + f(0, y_i^{(0)}) \right]$ $t = 1 + 0.2 [1 + x_1 + y_1^{(0)}]$ 18501-1+ (10) = 1+0.1 [1+0.2+1.2] = 1-24/1 28201 y (2) = 1.244, y (3) = 1.2444 12801-1 + (1-0) + & They y(0.2) = 1.2444/ Using Euler's predictor and corrector 8 formula compute y(1.1), Correct to flue PH2011 decemai places given that dy + y = 1 and y=1 at x=1. Also find the analytical solⁿ. data 200=1, 190=1 Son By $\frac{dy}{dy} + \frac{y}{x} = \frac{1}{x^2}$ $\frac{dy}{dx} = \frac{1}{x^2} - \frac{y}{x}$ Th $=\frac{1-yx}{x^2}$

classmate we have f(x, y) = 1 - y x $f(x_0, y_0) = 1 - y_0 x_0 = 1 - (y_0) = 0$ $x_1^2 = 1^2$ 1+h=1·1=> h=1·1-1=>h=0·1 201=200th=1+001=101=> 201=101 $Y(x_1) = Y_1 = Y(1 \cdot 1) = 9$ From Euler's formula: y (0) = yo + h f (oco, yo) y.(°) = 1 + (0.1) (0) y(0) = 1/1 we have modified Euler's formula $y^{(1)} = y_0 + h [f(x_0, y_0) + f(x_1, y_1^{(0)})]$ $= 1 + 0.1 [0 + 1 - x_1 y_1^{(0)}]$ = 1 + 0.05 [1 - (1 - (1))(1)] (1 - (1))^2 g, (*) = 0.99586 $y_{1}^{(2)} = y_{0} + h \left[f(x_{0}, y_{0}) + f(x_{1}, y_{1}^{(0)}) \right]$ = 1 + 0.1 [0 + 1 - 20, y, 0)]x2 $= 1 + 0.05 \int (-(1-1)(0.99586))$ (1.1)2 = 0.99605 $y_{i}^{(3)} = y_{0} + \frac{h}{\alpha} \left[f(x_{0}, y_{0}) + f(x_{1}, y_{1}^{(2)}) \right]$ $= 1 + 0.05 \left[0 + 1 - x, y, \frac{(2)}{7^2} \right]$ d

 $= 1 + 0.05 \left[1 - (1.1)(0.99605) \right]$ $(1.1)^{2}$ =0.9960421 11-10-14(1-14)30 (= 19) = 0 - 99605 Thus y(1.1) = 0.99805 Analytical Solution $\frac{dy}{dx} + \frac{y}{x} = \frac{1}{x^2} \quad \frac{y}{y} \quad of the form \frac{dy}{dx} + \frac{py=0}{dx}$ P=Yz and on = Yz2 cohose solution is given by $\begin{array}{l} y(IF) = \int o\gamma IF d\sigma c + C \\ cohere IF = e^{\int p d\sigma} & \int \frac{1}{2} \int \frac{1}{2} d\sigma & \frac{1}{2} \log \sigma \\ = e^{\int \frac{1}{2} \sigma \sigma} & = e^{\int \frac{1}{2} \sigma \sigma} & = \sigma \\ = e^{\int \frac{1}{2} \sigma \sigma} & = e^{\int \frac{1}{2} \sigma \sigma} & = \sigma \\ \end{array}$... IF = 201.0-1 30 2 + Soin is $Y(ZF) = \int OTF dx + C$ $y(x) = \int \frac{1}{\pi^2} x \neq dx + C$ $xy = \int dx + c$ xy = dogsc + C - € ovous use have to find y(1.1) by cying the initial condition DC = 1 Y = 1(1)(1) = dog(1) + C => 1 = 0 + C => C=1 Euog(1) = 0 J

classmate put c value in R xy = dog x + 1y = 1 + dog x140101 19 par 20=101 ave will get y(1.1) y = 1+109(1.1) y=0.995,736 [yeln] y = 0.99574 is the analytical solution Runge Kutta method of fourth order Consider the initial value problem $\frac{dy}{dx} = f(x, y), \quad y(x_0) = y_0$ $\frac{dx}{dx}$ we need to find $y(x_0 + h)$ when h is the Step Size coe have to first compute KI, K2, K3, K4 by the following formula $K_1 = h P(x_0, y_0)$ K2=hf (xoth, yotki) $K_3 = hf(x_0+h, y_0+k_2)$ Ky = hf (xoth, yot K3) $y(x_0+h) = y_0 + 1 (K_1 + 2K_2 + 2K_3 + K_4)$ The required Problems 3001 + 1008

Given $\frac{dy}{dx} = 3x + \frac{y}{2}$, y(0) = 1, Compute y_{10-2} 3 by taking h=0.2 wing Range - Kutta method of fourth order. Also find the analytical Solution. By data f(x, y) = dy = 3x + ydx = 2ono $\frac{1}{2} (2c, y) = 3x + \frac{y}{2}$ 20=0 Yo=1 h=0.2 f(200, yo)=0.5 we shall florgt find KI, K2, K3, K4 KI = hf (200, 90) = (0.2) f(0, 1) Here HARY Sours $K_1 = (0.2)(0.5)$ KAREO. 1/ WIDE WHILM and reparts $K_2 = hf(x_0 + h/2, y_0 + K/2)$ = 0.2f(0+0.2, 1+0.1)= 0.2 f(0.1, 1.05)12 14 281 3 6 = 0.2 [3(0.1) + 1.05 MAL 2 Atorital - al = 0.165/1 4= hi Tarth, 4+ Kal K3 = hf (x0+h/2, y0+K2/2) = 0.2 f(0 + 0.2, 1 + 0.165)= 0.28 (0.1, 1.0825) = 0.2 3(0.1) + 100825

classmate K3 = 0.16825/1 $K_{H} = h_{f}(x_{0}+h, y_{0}+K_{3})$ = 0.2 f (0+0.2, 1+0.16825) = 0-29 (0.2, 1.16825) = 0 • 2 [3(0 • 2) + 1 • 16825 K4 = 0.236825 y(xoth) = Yo + Y6 (K1 + 2K2 + 2K3 + K4) y (0.2) = 1+ 1/ (0.1+2(0.165)+2(0.16825) +0.2368 = 1.1672 we shall find the analytical solution of the given equation by contring in the form dy py = 02 whose solution is dx $y(IF) = \int on EIF dx + C$ $ohere IF = e \int p dx \quad cohex \frac{dy}{dx} - \frac{y}{2} = 3x$ $\int p dx \quad \int -\frac{y}{2} dx \quad here \quad p = -\frac{y}{2} \quad on = 3x$ IF = e = e $TF = e^{-\frac{1}{2}x}$ Soin y $ye^{-\frac{y_2x}{2}} = \int 3xe^{-\frac{x_1}{2}} dx + C$ $ye^{-\frac{x_1}{2}} = 3\int xe^{-\frac{x_1}{2}} dx + C$

CLASSMAL Integrating RHS by parts we have $\frac{ye^{-x/2}}{-y_2} = 3\left[xe^{-x/2} - \int \frac{e^{-x/2}}{-y_2} (i) dx\right] + 0$ = 3[-2xe^{-x/2} + 2 e^{-x/2}] + C yex1/2 = -6xe x/2 -12e x/2 + C · 12% + B.S by e 242 $y = -6xe^{-2C/2} - 12e^{-2C/2} + \frac{C}{e^{-2C/2}}$ 10.2369 y = -620 - 12 + ce 2/2 We initial condition to find C, $x=0, y=1, 1=0-12+ce^{-1/2}$ =) C=13 Now by putting = = 0.2 we have y(0.2) = -6(0.2) -12 +3 e 1/2 21(0.2)= 1.1672219 y(0.2)=1.1672 by analytical Solution 0 Do youngerf Use fourth order Runge Kutta method to solve (x+y) dy = 1, y(0.4) = 1 at x = 0.5 Correct to four decimal places

classmate $\frac{g_{0}}{g_{0}} = \frac{dy}{dx} = 1$, $y_{0} = 1$, $x_{0} = d_{0} u$, y(0.5) = 9x = xo th x = 0.4 + h0.5-0.H=h=> h=0.1 010+031+1 K1 = 0.0714 K2 = 0.0673 K3 = 0.0674 3 10 14 = 0.0638YLO.5) = 1.0674// 1.011 Decit 3 Using Runge Kutta method of fourth order find y(0.2) for the equation dy = y-x June 18 y co) =1 taking h=0.2 By data $f(x, y) = \frac{y - x}{y + x}$ $x_0 = 0$ $y_0 = 1$ h = 0.2Soing y (0.2) = ? we shall find K1, K2, K3, K4 $K_1 = hf(p(0, y_0) = (0, 2)f(0, 1)$ = (0.2) 1-0 1+0 K1 = 0.2 $K_2 = hf\left(\frac{x_0+h}{2}, \frac{y_0+K_1}{2}\right)$ = (0.2)f(0+0.2, 1+0.2)= (0.2) f (0.1, 1+0.1)= (0.2) f (0.1, 1.1)

CLASSMAT K2 = (0.2) 1.1 - 0.1 101+001 K2 = 0-1867/ $K_3 = h f \left(x_0 + h/2, y_0 + K_2 \right)$ = 0.2f(0+0.2, 1+0.1667)= 0.2 p(0.1, 1.08335)-0.2 1.08335-0.1 1.08335+0.1 20.2 0.983351 (00000) 1-18335 = D.16619 Ky = hf (xoth, yotks) = 0.2f (0+0.2, 1+0.16619) = 0.2 f (0.2, 1.16619) -0.2 1.16619-0.2 1-16619+0-2 = 0.1414/1 y(xoth) = Yot 1/6 (K, + 2K2 + 2K3 + K4) y(0.2) = 1+ Y6 (0.2+2(0.1667)+2(0.16619) +0.1414)

classmate y10.2) = 1.16786 use fourth order Runge kutta method to find @ y at $\infty = 0.1$ given that $dy = 3e^{\infty} + 2y$, y(0) = 0and h=0.1 $\frac{g_{0}}{y_{0}} = \frac{g_{0}}{y_{0}} = \frac{g_{0}}{y$ K1 = (0.1) (3) (3) K1=0.3/1 K2=hf (>co+h/2, yo+K1/2) =0.16(0+0.1)(0+0.3)= 0 · 1 f (0 · 05, 0 · 15) = 0°1 [3e + 2(0°15)] = 0.34538 K3= hf (200 + h/2, y0 + K2/2) =0.1f(0.05, 0+0.34538)= 0·1 f (0.05, 0·17269) =0.1 [3e +2(0.17269)] =0.3499/1 $K_{\mu} = hf(x_0 + hf_{\bullet}, y_0 + K_3 f_{\bullet})$ = 0.1 f(0.05, 0 + 0.3499)TONVEL (Q. PBG Id. NAMPY

classmate EO-1 [BK9951+12 10 1744951)] = 001 [30 + 2(0.3499)] = 0.4015 up toll maip har top . a. . A bring y(x0+h) = y0+ 1/6 (K1+2K2+2K3+K4) $= 0 + Y_6 (0.3 + 2 (0.3 + 5H) + 2 (0.3499)$ + 0.4015) Y (0.1)= 0.34868 Doyourself Por + Man last have) in Use fourth order Runge Kutta method to 3 find y(1.1) given that dy = xy 3, y(1)=1 By data $f(x, y) = xy^{1/3}$ $x_{0} = 1, y_{0} = 1$ Son we need to find y (1.1) 20 th = 101 h=1.1-200 h=1.1-1 (stattel exit period h=00// we shall find KI, Ke, Kg, Ky K1=001 (Pas $1 \times 2 = 0.1067$ y(1.1) = 1.1068 $1 \times 3 = 0.1068$ Ky = 0.1138 11 PUR. 0-Do your Self, Using Runge Kutta method of fourth 6 order Solve dy 1 y = 2 x at x = 1-1 given that g=3 at 20=1 initially

Dinte ? By data $\frac{\partial g^{(n)}}{\partial x} = \partial x - y, \quad y_0 = 3 \quad x_0 = 1$ f(x,y) = 2x-y, xoth=1-1 > h=1-1-2co=1-1-1 h=0.1/1 coe Shall find K1, K2, K8, K4 Ki = hf (xo, yo) = (0.1) f (1.3) = 0.1 2(1)-3 K1 = - 0.1 $K_2 = h f(x_0 + h/2, y_0 + K/2)$ $= (0 \cdot i) f (1 + 0 \cdot 1, 3 + (-0 \cdot 1))$ = (0.) + (1.05, 2.95) = (0.1) (2(1.05) - 2.95) = -0.085/1 $K_3 = hf(x_0 + h/2, y_0 + K_2/2)$ = 0.1 f (1.05, 3 + (-0.085)) = 0 · 1 f (1.05, 2.9575) = 0.1 2(1.05) - 2.9575 = -0.08575/1 Ku = hf (2coth, Yotk3) = 0.1f(1+0.1, 3+(-0.08575)) $= 0 \cdot 1 f (1 \cdot \phi, 3 + (-0.08595))$ =0.1 f(1.1, 2.91425) = 0.1 [2(1.1) + 2.91425] Ky = -0.071425

classmate y (xo +h) = yo + 1/6 (K1 + 2K2 + 2K3 + K4) $= 3 + \frac{1}{2} \left(-0.1 + 2 \left(-0.085 \right) + 2 \left(-0.085 \right) \right)$ -0.071425) y (1-1) = 2.9145125y 8.9145 Using Runge Kutta method of fourth order find y(0.2) for the equation $\frac{dy}{dx} = \frac{y-x}{y+x}$, y(0)=1 taking h=0.1F Dec 2018 Soine The problem hay to be done in too stages $\frac{T Stage^{\circ}}{Y + x} = \frac{f(x, y) = y - x}{y + x} = \frac{x_0 = 0}{y_0 = 1}, \quad h=0^{\circ} 1$ we have to find y10.1) We Shall find KI, K2, K3, K4 $K_1 = hf(x_0, y_0)$ Kashf (xothis, yothele = (001) f (0, 1)= (0.1) (1-0 -) + 0, 20.1) = 100 -1+0 = (0.1) (2930.8 K1=001/1 - 1201) 0 100 - $K_2 = h_1^2 \left(x_0 + h_{1/2}, y_0 + K_{1/2} \right)$ = (0.1)f(0+0.05, 1+0.05)1-071751 = (0.1) f (0.05, 1.05) $= 10.1) \begin{bmatrix} 1.05 - 0.05 \\ 1.05 + 0.05 \end{bmatrix}$ = 0 • 0 9 0 9

classmate K3 = hf (200+h/2, y0+K2/2) = (0·1) f (0+0.05, 1+0.0909) = (0·1) f (0.05, 1.045H5) CUPET-1 = (0.1) [1.0H5H5-0.05 1.04545+0.05 = 0.09087/1 (extraction (1+ Ke)) CHEDEL LOBIST AND Ku = hf (xoth, Yotk3) = (0·1)f (0+0·1, 1+0·09087) = (0.1) f (0.1, 1.09087) = 0.0832/1 Y(xoth) = Yo + Y6 (K, + 2K2 + 2K3 + K4) = 1+1/ (0.1.+2(0.0909)+2(0.09087)+ 0.0832) y(0.1) = 1.09112/ <u>TStoge</u> f(x, y) = y - x, $x_0 = 0.1$ $y_0 = 1.0911$ h = 0.1 y + x we need to find y(0.2) $K_1 = h p(x_0, y_0)$ = (0.1) p(0.1, 1009118) K2 = h f(2(0+h/2, yo+ K1/2) $= 0 \cdot 1 \left[\frac{1 \cdot 09112 - 0 \cdot 1}{1 \cdot 09112 + 0 \cdot 1} \right] = (0 \cdot 1) \left[(0 \cdot 15 + 1 \cdot 13272) \right]$ $= 0.0832/1 = (0.1) \left[\frac{1.13292 - 0.15}{1.13272 + 0.15} \right]$ = 0.0766 K3 = hf (2c0+h/2, yot K2/2) = (0.1) f(0.1+0.1) (1.09112+0.0766)= (0·1) f (0·15, 1·12942)

$$= (0 \cdot 1) f (0 \cdot 15, 1 \cdot 189 \cup 2)$$

$$= (0 \cdot 1) f (0 \cdot 15, 1 \cdot 189 \cup 2)$$

$$= (0 \cdot 1) [1 \cdot 189 \cup 2 \cdot 0 \cdot 15]$$

$$= 0 \cdot 0.7655$$

$$K_{U} = h f (x_{0} + h, y_{0} + K_{3})$$

$$= (0 \cdot 0) f (0 \cdot 2, 1 \cdot 16967)$$

$$= (0 \cdot 0) f (0 \cdot 2, 1 \cdot 16967)$$

$$= (0 \cdot 0) f (0 \cdot 2, 1 \cdot 16967)$$

$$= (0 \cdot 0) f (0 \cdot 2, 1 \cdot 16967)$$

$$= (0 \cdot 0) f (0 \cdot 2, 1 \cdot 16967)$$

$$= (0 \cdot 0) f (0 \cdot 2, 1 \cdot 16967)$$

$$= (0 \cdot 0) f (0 \cdot 2, 1 \cdot 16967)$$

$$= (0 \cdot 0) f (0 \cdot 2, 1 \cdot 16967)$$

$$= (0 \cdot 0) f (0 \cdot 2, 1 \cdot 16967)$$

$$= (0 \cdot 0) f (0 \cdot 2, 1 \cdot 16967)$$

$$= (0 \cdot 0) f (0 \cdot 2, 1 \cdot 16967)$$

$$= (0 \cdot 0) f (0 \cdot 2, 1 \cdot 16967)$$

$$= (0 \cdot 0) f (0 \cdot 2, 1 \cdot 16967)$$

$$= (0 \cdot 0) f (0 \cdot 1) f (0 \cdot 0) f (0 \cdot 1)$$

$$= (0 \cdot 0) f (0 \cdot 1)$$

$$= (0 \cdot 0) f (0 \cdot 1)$$

$$= (0 \cdot 2) f (0 \cdot 2) f (0 \cdot 1)$$

$$= (0 \cdot 2) f (0 \cdot 2)$$

classmate K2=hf()co+h/2, y0+K1/2) = (0.8)f(0+0.2, 1+0.2)(PARI-D) $= (0.8) \left[\frac{(1.1)^2 - (0.1)^2}{(1.1)^2 + (0.1)^2} \right]$ = (0.2) f (0.1, 1.1) = 0.19672 K3 = hf (x0+h/2, y0+K2/2) $= (0 \cdot 2) p (0 + 0 \cdot 2 + 1 + 0 \cdot 19672)$ = (0.2) p (0.1, 1.09836) $= (0 \cdot 2) (1 \cdot 09836) - (0 \cdot 0) (1 \cdot 09836)^{2} + (0 \cdot 1)^{2}$ = 0 . 19671 Ky = hf (xoth, yot K3) = (0.2) f (0+0.2, 1+0.19671) $= (0 \cdot 2) p (0 \cdot 2, 1 \cdot 19671)$ $= (0.2) \left[\frac{(1 \cdot 19671)^2 - (0.2)^2}{(1 \cdot 19671)^2 + (0.2)^2} \right]$ $= 0.18913 \\ \text{coe have } y(x_0+h) = Y_0 + Y_6 (K_1 + 2K_2 + 2K_3 + K_4)$ $= 1 + \frac{1}{6} (0 \cdot 2 + 2 (0 \cdot 196 + 2) + 2 (0 \cdot 196 + 1)$ + 0.18913) y (0.2) = 1.1959 $\frac{TStage:}{f(x, y)} = \frac{y^2 - x^2}{y^2 - x^2} = \frac{y + 1}{y^2 - x$ K, = h f (xot 'Yo) = (0.2) f (0.2, 1.1959) Scanned with CamScanne

$$= 0.3f(0.3, 1.1959) = (0.3)^{2}$$

$$= (0.3) \left[(1.1959)^{2} - (0.3)^{2} \right]$$

$$= 0.1991$$

$$= 0.1991$$

$$= 0.1991$$

$$= 10.3f(0.8 + 0.2, 1.1959 + 0.1391)$$

$$= 10.3f(0.8 + 0.2, 1.1959 + 0.1391)$$

$$= 10.3f(0.8 + 0.2, 1.1959 + 0.11919)$$

$$= 0.17949$$

$$M_{3} = hf(x_{0} + h_{2}, y_{0} + k_{2}/s)$$

$$= (0.3)f(0.3, 1.885645)$$

$$= (0.3)f(0.3, 1.885645)$$

$$= (0.3)f(0.3, 1.885645)$$

$$= (0.3)f(0.3, 1.885645)$$

$$= 0.17934/$$

$$K_{4} = hf(x_{0} + h_{1}, y_{0} + k_{3})$$

$$= (0.3)f(0.8 + 0.3, 1.1959 + 0.17934)$$

$$= (0.3)f(0.4, 1.37524)^{2} - (0.4)^{2}$$

$$= 0.1688$$

1

y(xo+h) = Yo+ Y6 (K, + 2 K2 + 2 K3 + K4) = @## 1-1959+ Y6 (0-1891+2 (D-17949) + 2 (0.17934) + 0.1688) y (0.4)= 1.37516 ternight yu farm Am the what it get to come Numerical predictor and corrector Methody we discuss two predictor and corrector methody namely O Milne's method @ Adams - Bash forth method Consider the differential equation y'= dy = f(x,y) with a set of four predetermined values of y; y(xo) = yo, y(xi) = y, y(x_2) = y_2 and y(x_3) = y_3 here xo, x1, x2, x3 are equally spaced valley of sc with width h A WART Dely to Dely total Predictor and corrector formula to Compute y(xu) = Yu are cy follows Milne's predictor and Corrector formula $y_{u}^{(p)} = y_{0} + uh \quad (ay'_{i} - y'_{2} + ay'_{3})... (predictor formula)$ Y (c) = Y2 + h (Y2 + HY3 + Y4) ... (corrector formula) Adams - Bashforth Predictor and corrector formula $y_{u}^{(P)} = y_{3} + \frac{h}{2h} (55y'_{3} - 59y'_{2} + 37y'_{1} - 9y'_{0}) (predictor)$ $y_{4}^{(c)} = y_{3} + h (9y'_{4} + 19y'_{3} - 5y'_{2} + y'_{1}) (convector)$

classmate working procedure 0 we fight prepare the table showing the values of y corresponding to four equidy tant volves of ∞ and the computation of y' = f(x, y)Q we compute yu from the predictor formula we we this value of yu to compute y' = fixu, yu 3 a we apply corrector formula to obtain the Connected value of Yy I This volue is used for computing yis to apply the corrector formula again sunday produced 0 The process & continued till we get Congisting in two congecutive values of yy NOTE ! we can ago find y5. Y6. by deduing expressions from the general form of predictor and corrector formula. ballet of sc with width h Problems Given that $dy = x - y^2$ and the data y(0) = 0, 0 June 2018 Y(0.2) = 0.02, Y(0.4)= 0.0795, Y(0.6)=0.1762 compute y at 2=0.8 by applying O milne's method 2 Adams - Bayhforth method we prepare the following table using Soino the given data which y essentially required arector applying the predictor and corrector for formula PETER PETER PET PETO PIP

By Adoms - Butforth method we have predictor formula $y_{\mu}^{(r)} = y_3 + h_{\mu} (55y'_3 - 59y'_2 + 37y'_1 - 9y'_0)$ $= 0.1762 + \frac{0.2}{2H} \left[55(0.5689) - 59(0.3937) + 37(0.1996) - 9(0) \right]$ $y_{\mu}^{(p)} = 0.30 H 92 // 2 - 200 AH + 2$ Now, $y'_{\mu} = \chi_{\mu} - y_{\mu}^2$ Y' = 0.8 - (0.30H92)2 (10)H + 0 y' = 0.707 Next, we have the corrector formula $y_{\mu}^{(0)} = y_{3} + h_{AH} \left(9y_{H}^{\prime} + 19y_{3}^{\prime} - 5y_{2}^{\prime} + y_{1}^{\prime} \right)$ $y_{H}^{(V)} = 0.1762 + 0.2 \left[9(0.707) + 19(0.5689) - 5(0.3937) + 0.1996\right]$ $y_{4}^{(1)} = 0.30456^{-0.00}$ y = 2c4 - 9" $= 0.8 - (0.30456)^2$ - 0.7072 Applying corrector formula again with only Change in the Value of y' we obtain, $\mathcal{Y}_{4}^{(c)} = 0.1762 + \frac{0.2}{24} \left[9(0.7072) + 19(0.5689) - 5(0.3937) + 0.1996 \right]$

y"= 0.30456 They y = y 10.8) = 0.30456 Delly milde's method to compute y (1.4) correction to feur deumai places given dy = x² + y/2 and following data y(1)= 2, y(1.1)= 2.2156. y(1.2)= 2.4649, y(1.3) = 2.7514 Soins Fight we Shall prepare the following table $x y y' = x^2 + y/2$ $x_0 = 1$ $y_0 = 2$ $y_0' = 1^2 + \frac{2}{2} = 1 + 1 = 2$ $x_1 = 1 \cdot 1$ $y_1 = 2 \cdot 2156$ $y_1' = (1 \cdot 1)^2 + 2 \cdot 2156 = 2 - 3178$ $x_2 = 1 \cdot 2$ $y_2 = 2 \cdot 46 + 9$ $y'_2 = (1 \cdot 2)^2 + \frac{2 \cdot 46 + 9}{2} = 3 \cdot 672 + 5$ $x_3 = 1.3$ $y_3 = 2.7514$ $y'_3 = (1.3)^2 + \frac{2.7514}{2} = 3.0657$ 80+8 - (V-1) & - 1 (M) - 8+ 141 $z_{4} = 1 - 4$ $y_{4} = ?$ Brid opp. 8 we have $y^{(p)} = y_0 + \frac{Hh}{3} (2y'_1 - y'_2 + 2y'_3)$ $\mathcal{Y}_{4}^{(n)} = 2 + \frac{H(0 \cdot 1)}{3} \left[2(2 \cdot 3178) - 2 \cdot 67245 + 2(3 \cdot 0657) \right]$ = 3.07927 $\begin{array}{rcl} \vdots & y_{\mu}' = 2q_{\mu}^{2} + \frac{y_{4}}{2} \\ &= (1\cdot 4)^{2} + \frac{3\cdot 07927}{2} \end{array}$

Y = 3. 49963 $y_{4}^{(0)} = y_{2} + h_{3}(y_{2}' + Hy_{3}' + y_{4}')$ Now consider $= 2 \cdot 4649 + \frac{0 \cdot 1}{3} \left[2 \cdot 6 + 245 + 4 \left(3 \cdot 0657 \right) + 3 \cdot 49963 \right]$ 4"= 3.07939 Maccoler Now, y' = xy + yy 2 = (1.4) + 3.07939 Substituting this value of Y'y again in the corrector formula we obtain $Y_{4}^{(0)} = 2 \cdot 4649 + \frac{0 \cdot 1}{3} \left[2 \cdot 67245 + 4(3 \cdot 0657) + 3 \cdot 49969 \right]$ Y = 3.07939 (EI) HIBERCE VEIE They yu = y (1.4) = 3.07939 3 If $\frac{dy}{dx} = \partial e^{x} - y$, $y(0) = \partial$, $y(0 \cdot i) = \partial \cdot 0 i0$, 410.2) = 2.040 and 4(0.3) = 2.090 find y (0.4) correct to four decimal places by cying @milne's predictor-corrector method (6) Adams - Bashforth predictor -Corrector method CAPPIN the corrector formula twice) the t pc = (14) + 3.07927

y'= 20 - 4 2=0 30=2 30=2=0 2=0+1 41=2-010 41=2 24 -41= 82 - 2.010=0.2003 3-0-2 4= 2-040 43 = 20"-43 = 20"-2-040 = 0-4028 3:0-2 9x 23:0-3 43: 2.090 4'3 = 20" - 48 = 20" - 2.090 = 0.6097 2 = E 4 JA = ? " bang drast an @ By milne's predictor - corrector method $y_{\mu}^{(m)} = y_{0} + \frac{\mu h}{3} (ay'_{1} - y'_{2} + ay'_{3})$ = 2 + H(0·1) (2(0·2003) - (0·H028)+2(0·609)) = 2.16229 y"= 2.1623 alane NOW, $y'_{\mu} = \partial e^{\alpha_{\mu}} - y_{\mu}$ = 2e"- 2.1623 = 0.8213 Next, we have milne's corrector formula $\begin{aligned} y_{\mu}^{(0)} &= y_{3} + h_{3} \left(y_{3}' + Hy_{3}' + y_{4}' \right) \\ &= \vartheta_{2} \cdot 0H0 + \frac{0!}{3} \left(0 \cdot 4088 + H \left(0.6097 \right) + 0.823 \right) \end{aligned}$ = 2.16229 (3131.8 = y(e) = 2.162 $y'_{\mu} = ae^{\chi_{\mu}} - y_{\mu}$ = 2e0.4 - 2.1621

Y = 0.8215 Applying corrector formula again we have Y"= 2.04+0.1 [D.4028+4 (0.6097)+0.82) They y(0.4) = 2.1621/1 = 2.162/1 By Adams-Bayhforth predictor-Corrector method have $y_{H}^{(p)} = y_{3} + h_{2H} (55y'_{3} - 59y'_{2} + 37y'_{1} - 9y'_{2}$ we $\begin{aligned} y_{H}^{(p)} = 2.090 + \frac{0.1}{2H} \begin{bmatrix} 55(0.6097) - 59(0.4028) \\ + 37(0.2003) - 9(0) \end{bmatrix} \end{aligned}$ 4 = 2.16158 Y(P) = 2.1616 Now, $y'_{\mu} = 2e^{2c_{\mu}} - y_{\mu}$ $y_{\mu} = 2e^{-2c_{\mu}} - y_{\mu}$ Y' = 200 - 2. 1616 - 400 Y' = 0.822/1 Next we have, $y_{H}^{(1)} = y_{3} + h_{2H} \left(9 y_{H}^{\prime} + 19 y_{3}^{\prime} - 5 y_{2}^{\prime} + y_{1}^{\prime} \right)$ $y_{\mu}^{(0)} = 2.090 + \frac{0.1}{24} \left[9(0.822) + 19(0.6097) - 5(0.0028) + 0.2003 \right]$ Yy = 2.1615/1 Pressing NOW, Y' = 20° - YA y'y = 20°H - 2.1615 = 0.822149 => y' = 0-82215

Substituting again in the corrector formula, We obtain y" = 2.090 + 0.1 [9(0.88215) +19(0.607) 34 [-5(0.4028) + 0.2003] y" = 2.1615 They y(0.4) = 2.1615 Appig Adams - Bashforth method to solve the equation $(y^2+1) dy - x^2 dx = 0$ at x = 1given y(0)=1, y(0.25)=1.0026, y(0.5)=1.0206 y(0.75) = 1.0679, Apply corrector formula Some By data $dy = y' = \frac{x^2}{y^2 + 1}$ we prepare the following table ·x(66300) PY (486409) = 37+ H PS 30 $y_0^1 = \frac{x_0^2}{y_0^2 + 1} = \frac{0}{1 + 1}$ $x_0 = 0$ $y_0 = 1$ $\mathcal{Z}_{i} = 0.35 \quad \mathcal{Y}_{i} = 1.0036 \quad \mathcal{Y}_{i}' = \frac{\mathcal{X}_{i}^{2}}{\mathcal{Y}_{i}^{2} + 1} = \frac{(0.35)^{2}}{(0.0026)^{2}} = 0.03116$ $\begin{aligned} &\mathcal{Z}_{3} = 0.5 \quad \mathcal{Y}_{2} = 1.0206 \quad \mathcal{Y}_{2}' = \frac{\mathcal{X}_{2}^{2}}{\mathcal{Y}_{2}^{2} + 1} = \frac{(0.5)^{2}}{(1.0200)^{2} + 1} = 0.12245 \\ &\mathcal{Z}_{3} = 0.75 \quad \mathcal{Y}_{3} = 1.0679 \quad \mathcal{Y}_{3}' = \frac{\mathcal{X}_{3}^{2}}{\mathcal{Y}_{3}^{2} + 1} = \frac{(0.75)^{2}}{(1.0200)^{2} + 1} = 0.2528 \end{aligned}$ $x_{\mu} = 1 \quad y_{\mu} = ?$ 886H-0 = 48 Genre den sonnula navin wie paypiggA (8646-21011 C brain we have the predictor formula $y_{4}^{(P)} = y_{3} + h_{34} \left[55y_{3}^{\prime} - 59y_{2}^{\prime} + 37y_{1}^{\prime} - 9y_{0}^{\prime} \right]$

Y (P) = 1.0679 + 0.25 [55(0.2628) - 59(0.1224) 34 = +37(0.03116) - 9(0) - 95 = 1.1652 $\begin{aligned}
\mathcal{Y}_{H}^{\prime} &= \frac{\mathcal{T}_{H}^{2}}{\mathcal{Y}_{H}^{2} + 1} \\
\mathcal{Y}_{H}^{\prime} &= \frac{1^{2}}{(1 \cdot 1552)^{2} + 1} \\
\mathcal{Y}_{H} &= (260.0) \\
\mathcal{Y}_{H}^{\prime} &= (260.0$ 3141 - 8 - (H-3) B (MA) Ý = 0.42835000 € 999 G . (1000 JH = 0.428 H/ Next, we have the corrector formula $y_{\mu}^{(0)} = y_3 + h_{24} \left(qy'_{\mu} + 1qy'_3 - 5y'_2 + g'_1 \right)$ $= 1.0679 + \frac{0.95}{34} \left[9(0.4384) + 19(0.3638) \right]$ = 1.1536 $y_{\mu}^{(2)} = 1.15 H$ NO(0, $y'_{\mu} = \frac{1^2}{(1.15 H)^2 + 1}$ PG001 PG001 Ju = 0.4288 Applying the corrector formula again we 1 = 48 1 = 20 $\begin{aligned} y_{\mu}^{(0)} &= 1.0679 + \frac{0.25}{34} \begin{bmatrix} 9(0.488) + 19(0.3688) \\ -5(0.13345) + 0 \end{bmatrix} \\ y_{\mu}^{(0)} &= 1.153 \\ \end{bmatrix} \xrightarrow{=} y_{\mu}^{(0)} = 1.154 \end{aligned}$ obtain

The y(1) = 1.154 - 185 det 1 00, The following table gives the Solution Of 5xy'+y2-2=0. Find the Value of y at x=4.5 ying milne's predictor and corrector formula ... use the corrector formula twice. 4 H. 1 H. 2 H. 3 H. 4 1 1.0049 1.0097 1.0143 1.0187 a y Soine By data 5 x y + y - 2 = 0 $5xy' = 2 - y^2$ $y' = \frac{2 - y^2}{5x}$ $y' = \frac{2-y'}{5x}$ DC 4 $y_0' = \frac{2 - y_0^2}{5x_0} = \frac{2 - (1)^2}{5(4)} = 0.05$ 26 = H Y0 = 1 $x_1 = H \cdot I \quad y_1 = I \cdot 0049 \quad y_1' = \frac{2 - y_1^2}{5x_1} = \frac{2 - (I \cdot 0049)^2}{5(H \cdot I)^2} = 0 \cdot 0.47829$ $y'_{y} = \frac{2 - y'_{y}}{5x_{y}} = \frac{2 - (1 \cdot 0187)^{2}}{5(1 + 0.0437)} = 0.0437$ 24=4.4 44=1.0187 x = H.5 45 = ? × 1023 we have milne's predictor and corrector formula in the Standard form $y_{\mu}^{(p)} = y_0 + \frac{\mu h}{3} (2y'_1 - y'_2 + 2y'_3);$ $y_{H}^{(c)} = y_{2} + h_{3} (y_{2} + Hy_{3} + y_{H})$ Since we require Ys, the equivalent form of these formula are given by

ys (P) = y, + Hh [2y', - 4'3 + 29'] y"= y, + 1/3 [y'3 + Hy' + y'3] hence yen = 1.0049+4 (0.1) [26.04669) - 0.04415 + 2x0.04873] = 1.02312 $y'_{5} = \frac{2 - y'_{5}}{5 x_{s}}$ $= 2 - (1.02312)^2$ 5(4.5) 0.04236 hence, y (1) = y3 + b/3 [y'3 + HyH + y'5] $= 1.0143 + \frac{0.1}{3} \begin{bmatrix} 0.0454\\ 0.04445 + 4(0.04836] \\ + 0.04836 \end{bmatrix}$ 5+4 (0.04373 = 1.083048 18 falon = 48 H-1 \$ 1.023 1= all 2.4 be milme & protos $y_5' = \frac{2 - y_5}{5x_5}$ $= 2(-(1.033)^{2})^{2}$ 5(4.5) H) at 2 could real of high

applying corrector formula again y" = y3 + 1/3 [y'3 + Hy'H + y'5] = 1.0143 + 0.1 = 0.04517 + 4(0.04373)= 10 023048 1 ya + 24 ya 9 \$ 1.023 They y(H.5) = 1.023 ()+90 3 Solve the differential equation y'+y+xy'=0 with the Initial Valuey of $y: y_0 = 1, y_1 = 0.9008, y_2 = 0.8066,$ (ner y3 = 0.722 corresponding to the Values of $x: x_0=0, x_1=0.1, x_2=0.2, x_3=0.3$ by Computing the Value of y corryponding to x = 0.4. Applying Adams - Bayhforth Predictor and corrector formula Dec 2017 Hu = - (Yu + Zu Su 8010 $2c_{1}=0.1 \quad y_{1}=0.9008 \quad y_{1}'=-(y_{1}+x_{1}y_{1}')=-(0.9008+(0.1)(0.9008)) \\ =-0.9819$ $\mathcal{D}_{2} = 0.2 \quad \mathcal{Y}_{2} = 0.8066 \quad \mathcal{Y}_{2} = -(0.8066 + (0.2)(0.8066)^{2}) = -0.9367$ $z_{3} = 0.3 \quad y_{3} = 0.722 \quad y_{3}' = -(0.722 + (0.3)(0.722)^{2}) = -0.8784$ -)r) 10+ 6 8 + . 0 = (0) 1 2,=0.4 44=? have AB predictor formula we Yu"= Y3 + 1/24 [55 y3 - 59 y2 + 37 y', -9%]

manda abum $\mathcal{Y}_{u}^{(0)} = 0.792 + \frac{0.1}{24} \left(55(-0.8984) - 59(-0.9362) + 37(-0.9819) - 9(-1) \right)$ y"= 0.63709 Yu' = - (Yu + 2c4 Yu) =-(0.63709+(0.4)(0.63709) = -0.99944/1000 r we have y' = y3 + 1/24 (944 + 1943 - 54'+4 $y_{4}^{(0)} = 0.792 + 0.1 \left(9(+0.79944) + 19(-0.8784) - 5(-0.9367) + (-0.9819)\right)$ At y coo 63.79 parte sulley sulley and a sulley with a sulley of the sulley of the sulley but th Burpa $y'_{y} = -(y_{y} + x_{y} y'_{y})$ $= = -(0.6379 + (0.4)(0.6379)^2)$ ade of (1 a) + 800 b 0 0.800, 00 (8) -= 1, 6 800 b 0= 16 1.00 - 30 apply corrector formula ongogain $\mathcal{Y}_{4}^{(r)} = 0.722 + 0.1 \left(9(-0.80066) + 19(-0.8784) -5(-0.9367) + (-0.9819) \right)$ have be burged at the work \$2.200 4402 = 0.6379 KR2 - (KR2) 11 + 12 MI

Thuy y(0.4) = 0.6379 Find the Value of y at x=4.4 by applying Adams - Bashforth method given 5x dy + y - 2 = 0 and y=1 at x= 4 initially by generating the other required Values from the Taylor's polynomial. Sono we need to generate the value of y at 20=4.1, 4.2, 4.3 Taylor's Series expansion is given by $y(x) = y(x_0) + (x - x_0)y'(x_0) + (\frac{x - x_0}{2!}y''(x_0) + \cdots$ St10 .. (Since Des=4 yo=1 by data g(x) = y(H) + (x-H)y'(H) + (x-U)y'(H) = 0Consider 5xy'+y^-2=0-2, we obtain Subyrituting the initial Values we obtain (5)(H) y'(H) +1°-2=0 FPDD. = (B.H) 11 15 204'(H)-1=0.0)(H-8.N)+1= (8.N)K 5410.0-4(u·3) = 1·0142 6H10·1 = (8·0) dilos y'(H) = 1/20 B-S = B 30 - 1 y'(u) = 0.05/1- = - 8 D. @ w. r. to Proc.D-& = 12 proc.1=, 2 1.04=, 20 Substituting the initial values and y'(4) 5[Hy'(H) + y'(H)] + 2y(H)y'(H) = 020y"(H) + 5 (0.05) + 2 (1) (0.05)=0 20 y"(4) + 0.25 + 0.1=0 P = uy MA = us 20 y"(H) + 0·35=0

20y"(u) = -0.35 (600 - (0014 pu)) y''(4) = -0.35y"(H) = -0.0175 Value of the second demication itself y small enough coe shall approxime Since the Taylon's Series in () upto second degree terms only. Substitute these values in O $y(x) = 1 + (x - 4)(0.05) + (x - 4)^{2} (-0.0175)$ Now we need to find y^2 at x = 401 0 - 402, 403 $\frac{y}{(4\cdot 1)} = 1 + (4\cdot 1 - 4)(0.05) + (4\cdot 1 - 4)^{2}(-0.0175)$ y (u.) = 1.00H9/ $y(u\cdot 2) = 1 + (u\cdot 2 - u)(0.05) + (u\cdot 2 - u)(-0.0175)$ y(H·2) = 1.0097 0= 1 - 1 + (H) 12, 24 1(3) $y(u\cdot 3) = 1 + (u\cdot 3 - u)(0.05) + (u\cdot 3 - u)^{-}(-0.0175)$ y (u.3) = 1.0142 use there along with y (u) =1 initially $y' = \frac{2 - y^2}{5x} + (H)'y$ x $y_0 = H$ $y_0 = 1$ $y_0' = \frac{2 - y_0^2}{5^{2}c_0} = \frac{2 - 1^2}{5(H)} = \frac{1}{20} = 0.05$ $\mathcal{D}_{i} = H \cdot I \quad \mathcal{Y}_{i} = I \cdot 00049 \quad \mathcal{Y}_{i} = \frac{2 - (0.0049)^{2}}{5(4 \cdot 1)} = 0.0483$ $x_{g} = u \cdot 2 \quad y_{g} = 1 \cdot 0097 \quad y_{2}' = 2 - (1 \cdot 0097) =$ 0.04669 5(4.2) $y_3 = 1 \cdot 01 \cdot 02 \quad y_3 = 2 - (1 \cdot 01 \cdot 02)^2 = 0 \cdot 04 \cdot 518$ (2) 3 ··· (3) ··· (3) 2 · (H)" 100 zu= 4.4 Ju = 90-100 + 36.0 + (H)"2.06 30 g"(H) + 0.35 = 0

we have predictor formula $y_{4}^{(P)} = y_{3} + \frac{h}{24} \left[55y_{3}^{\prime} - 59y_{3}^{\prime} + 37y_{1}^{\prime} - 9y_{0}^{\prime} \right]$ $= 1.0102 + \frac{0.1}{24} \left[55(0.04518) - 59(0.04669) + 37(0.0483) - 9(0.05) \right]$ yu = 1.01864 alues. at a data 12 my = 2 - (1.01864)2 B+ 2 Eb Taylor Series en (H.H) 5 + (x - x) y "C Y= 0.0437 y con y chair t Next we have $y_{u}^{c0} = y_{3} + h_{su} (qy_{4}' + 1qy_{3}' - 5y_{2}' + y_{1}')$ $V_{0}^{(1)} = \frac{1 \cdot 0186}{y_{\mu}^{2}} = \frac{2 - y_{\mu}^{2}}{5x_{\mu}} \quad (0)$ Consic ()+a=(0)'8 $y'_{4} = 2 - (1 \cdot 0186)^{2}$ (0) 5(H \cdot H) gain put this value in 54(c) $g_{4}^{(1)} = 1 \cdot 0142 \pm \frac{0 \cdot 1}{24} \left[9(0 \cdot 0437) \pm 19(0 \cdot 04518) \\ -5(0 \cdot 04669) \pm 0.0483 \right]$ y(c) = 1.0186 Thuy y(4.4) = 1.0186

(B) Use Taylor's Series method (up to 3rd demuative term) to find D 2 ylov=1. Apply milne's Oxredictor 8" (Pool 0.2. 0.3 given that y" to find yeo.4 corrector formula Vsing the generated set of initiae y" y" Yalues Sol By data $dy = x^2 + y^2$, $y_0 = 1$ $x_0^2 = 0$ dx (H3810-1) - 0 č Taylor's Series expanyion 4 given by $y(x) = y(x_0) + (x - x_0)y'(x_0) + (x - x_0)y''(x_0)$ $(12 + (2 - 20)^3 y'''(20) + (12 + 22 - 31)^{10} y'''(20) +$ $(8|y(x)) = y(0) + (x-0)y'(0) + (DC-0)^2y'(0) + (x-0)y''(0)$ y (x) = y(0) + >cy'(0) + 20 y"(0) + 20 y"(0) + 0 Consider y'= x2 + y2 $y'(0) = 0^2 + (y(0))^2$ y'(0) = 0+(U) y'(0) = 1/ (2810.1 D. D w. r. to x y'' = 2x + 2yy' - 3First y"(0) = 2(0) + 24(0) y'(0) y"(0) = 0 + 2 (1)(1) 981001 = (0) y"(0) 3210-1= (Nowsky much Scanned with CamScanne

D. @ w.r. to x y" = 2 + 2 [y'y" + y'y] 2 6 2 y"= 2+ 2y'y"+ 2(y')2 1 - 2 3 - 5 y"(0) = 2 + 2 y'(0) y"(0) + 2(y'(0))² y"(0) = 2 + 2(1) (2) + 8 (1)24 + 02(1-12 80.5 y"(0) = 2+4+2 (20) = 22 deplice 200 y'''(0) = 8// H HOSHE put all these in O $y(x) = 1 + x(1) + \frac{x^2}{2}(2) + \frac{x^3}{6}(8)$ Consider $\sum_{x=0.1, 0.2, 0.3}^{+} (10) + 1 = 0$ $y(0 \cdot 1) = 1 + (0 \cdot 1)(1) + (0 \cdot 1)^{2}(2) + (0 \cdot 1)^{3} \times 8$ y(0.1) = 1.1113 $y(0.2) = 1 + (0.2)(1) + (0.2)^{2} \times 2 + (0.2)^{3} \times 8$ y 10.2) = 1.2507 $y(0.3) = 1 + (0.3)(1) + (0.3)^{2} \times 2 + (0.3)^{3} \times 8$ y(0.3) = 1.426 y(0.3) = 1.426 onue along with onue theye volue along with y(o)=1 initially, we prepage the following table P.T.O ... y = (0.4) + (1.6872)2 5 3.0066

at 19 10 10 y'= x + y + "0 '0 0 0 + 0 2 4 $x_{1} = 0$ $y_{1} = 1$ $y_{1}' = 0 + 1 = 1$ $x_{1} = 0.1$ $y_{1} = 1.013$ $y_{1}' = (0.1)' + (1.013)' = 1.9 + 1.9$ $y_{1}' = (0.1)' + (1.013)' = 1.6043$ 3=0.2 4,=1.2507 4'2= (0.2)2 + (1.2507)= 1.60425 $3_{3}=0.3$ $y_{3}=1.426$ $y'_{3}=(0.3)^{2}+(1.426)^{2}=9.18347$ √8 = (o) [™] X4=0.4 4 = ? put all these in D Consider y" = yo + uh (29, - y'2 + 293) $y_{4}^{(P)} = 1 + \frac{H(0.1)}{3} \left[\frac{\partial}{\partial} (1.2) + \frac{\partial}{\partial} (2.123) + \frac{\partial}{\partial} (2.123) \right]$ y = 1.68433 (1) + (1)(1.0) +1 (1.0) SIT -1 = (1-0) hence $y'_{u} = x_{u} + y_{u}^{2}$ y' = (0.4) + (1.68433) + 1 = (8.0) 8 94 = 2,9969 Next we have, ycon = 1/2 + h/3 (y'2 + Hy'3 + y'4) Vext we have, $g_{u}^{(0)} = 9_{2} + 9_{3} (1 + 9_{3} + 9_{3}) + 9_{4}^{(0)} = 1 \cdot 2507 + \frac{0 \cdot 1}{3} [1 \cdot 60425 + 4(2 \cdot 12347) + 9_{4}^{(0)} = 1 \cdot 2507 + \frac{0 \cdot 1}{3} [1 \cdot 60425 + 4(2 \cdot 12347) + 9_{4}^{(0)} = 1 \cdot 2507 + \frac{0 \cdot 1}{3} [1 \cdot 60425 + 4(2 \cdot 12347) + 9_{4}^{(0)} = 1 \cdot 2507 + \frac{0 \cdot 1}{3} [1 \cdot 60425 + 4(2 \cdot 12347) + 9_{4}^{(0)} = 1 \cdot 2507 + \frac{0 \cdot 1}{3} [1 \cdot 60425 + 4(2 \cdot 12347) + 9_{4}^{(0)} = 1 \cdot 2507 + \frac{0 \cdot 1}{3} [1 \cdot 60425 + 4(2 \cdot 12347) + 9_{4}^{(0)} = 1 \cdot 2507 + \frac{0 \cdot 1}{3} [1 \cdot 60425 + 4(2 \cdot 12347) + 9_{4}^{(0)} = 1 \cdot 2507 + \frac{0 \cdot 1}{3} [1 \cdot 60425 +$ = 1.68729 200 motion 1= (0)4 the following table $y_{u}' = x_{y}^{2} + y_{u}^{2}$ $y_{4}' = (0.4)^{2} + (1.6872)^{2}$ $y'_{u} = 3.0066$

put yy' again in the corrector formula y" = 1.2507 + 0.1 [1.60425 + 4(2.12347)+ 3 [3.0066] yco = 1.6875 $y'_{u} = x_{u}^{2} + y_{u}^{2}$ $y'_{u} = (0.u)^{2} + (1.6875)^{2}$ put y_{4}^{i} again in the corrector formula $y_{4}^{(c)} = 1.2507 + \frac{0.1}{3} \begin{bmatrix} 1.600.95 + U(3.1.0347) + \\ 3.0076 \end{bmatrix}$ $y_{4}^{(c)} = 1.2507 + \frac{0.1}{3} \begin{bmatrix} 1.600.95 + U(3.1.0347) + \\ 3.0076 \end{bmatrix}$ y4 (c) = 1.6875 They y(0.4) = 1.6875 The given second order DE the form: dz = g(x, y, z) with the Conditions y(x_1)= y, and z(w_)= Zo concre 1 3 denoted by to. have two first order B. Could and Ods A house a low A 's and the B. Could all and Ods and Could be a house of the and the a and Z(R)= Long Faking f(x, y, z) = Z, we new have the to were bridged

module-05 Numerical Solution of Second order ordinary differentiae equation & 9-1-6838 Introduction : The given Second order ODE with two initial Conditions will reduce to two first order simultaneous ODEs which Con be Solved. Con de pour Let y'' = g(x, y, y') with the initial Condition 8 $g(x_0) = y_0$ and $g'(x_0) = y'_0$ be the second order DE. Now, Let $y' = \frac{dy}{dx} = Z$. 3189.1-00 This gives y"= dy = dz The given Second order DE assumes the form: $\frac{dz}{dx} = g(x, y, z)$ with the Condition & y(xo) = Yo and z(xo) = Zo where Yo' is denoted by Zo. Hence, we now have two first order Simultaneous ODEs. $O \frac{dy}{dz} = Z \text{ and } O \frac{dz}{dz} = g(zc, y, z) \text{ with } y(x_0) = y_0$ and Z(2(a)=Zo Taking flox, y, z) = Z, we now have the following system of equations for solving.

 $dy = f(x, y, z), \frac{dz}{dx} = g(x, y, z);$ y(x0) = yo and Z(x0) = Zo Runge - Kutta Method we have to compute y(xoth) and if we have to compute y(xoth) and if required y'(>coth) = Z(xoth). we need to first compute the following Ki = hf (xo, Yo, Zo); li = hg(xo, Yo, Zo) Kg = hf (20+ 1/2, yo+ K1/2, Zo + l'/2); Ko pointing lg = hg (20+ h/2, yo + K 1/2, Zo + l'2) Kg = hf (xo + h/2, yo + K2, Zo + l2/2); ly = hg (xo + h/2, yo + k2/2, Zo + l2/2) Ky = hf (xo+h, yo+K3, Zo+d3); ly = hg (xo+h, yo+K3, Zo+l3) The required y(200+h) = 40 + 1/6 (K, + 2K2 + 2K3 + K4) and $y'(2t_0+h) = Z(x_0+h) = Z_0 + Y_6(l_1+2l_2+2l_3+l_4)$ Problem & are pinale frage find the P.T.D

Scanned with CamScanner

O Given $\frac{d^2y}{dz^2} - x^2 \frac{dy}{dz} - y = 1$, y(0) = 1y (0)=0. Evaluate y(0.1) Using Runge kutta method of order 4. By data $\frac{d^2y}{dx^2} - \frac{x^2}{dx}\frac{dy}{dx} - \frac{2xy}{dx} = 1, \ y(0) = 1 \ and \ y'(0) = 1 \ dx = 1$ y (0.1) =? y'= dy = Z y = A, y ao at acitia y"= dy=z putting, $\frac{dy}{dx} = Z$ and Differentiating, w.r. to x we obtain 1 = hg (20+ 1/3 $\frac{d^*y}{dz^*} = \frac{dz}{dz}$ So that given equation becomes $\frac{dz}{dx} - x^2 z - 2xy = 1$ hence, we have a System of equations $\frac{dy}{dx} = Z, \quad \frac{dZ}{dx} = 1 + 2xy + x^2 z \quad where$ dx (0)=0, y'=0 $y_{=1}, z_{=0}, x_{=0}$ Let, f(x, y, z) = Z, g(x, y, z) = 1 + 2xy + 3 $x_0 = 0$, $y_0 = 1$, $z_0 = 0$ and let y take we shall first find the h=0.1 following

K,=hf(x0, y0, 20) d, = hg(x0, y0, 20) $K_{i} = (0, 0) \neq (0, 1, 0)$ $d_{i} = (0, 0) \neq (0, 1, 0)$ $k_1 = (0 - i)(0)$ $l_1 = (0 - i)[1 + 2(0)(i) + (0)(0)]$ l1 = (0.1) (1) (1) (10) (10) = K1 = 0 e1 = 0.1/1 110-2 344 K=hf(xoth/2, yotK1/2, Zotd1/2) $= [0 \cdot i) f(0 + 0 \cdot i), 1 + 0/2; 0 + 0 \cdot i) f(0 \cdot i) = 0$ = 10.1)\$ (0.05, 1, 0.05) (0.01] (1.01= = (0-1) (0.05) Kg = 0.005 ly = hg (2co + h/2, yo + Ky2, Zo + 1/2) $(10=10^{-1})9(0+0^{-1}), 1+0/2, 0+0^{-1})$ = (0.1) g (0.05, 1, 0.05) $= (0 \cdot i) \left[1 + 2(0 \cdot 05)(1) + (0 \cdot 05)^{2}(0 \cdot 05) \right]$ = (1.0) H lg= 0.110012 28+ 1) Kg = hf (2co+h/2, yo+K2/2, Zo+d2/2) = (0.1) f (0+0.1/2), 1+0.005, 0+0.110012) = (0·1)f (0·05, 1·0025, 0·055) = (0.1) (0.055) l3 = hg (x0 + h/2, y0 + K2/2, Z0 + l2/2) $= [0 \cdot 1) g(0 + 0 \cdot 1, 1 + 0.005, 0 + 0.1100)2$ = $[0 \cdot 1) g(0 \cdot 05, 1 \cdot 0005, 0.055)$ = $[0 \cdot 1) g(0 \cdot 05, 1 \cdot 0005, 0.055)$ $= (0 \cdot 1) \left[1 + 2(0.05)(10025) + (0.05)(0.055) \right]$ = 0.110038/1

KH = hf (xo th, yo + K3, Zo + l3) $= [0 \cdot i) f(0 + 0 \cdot 1), (1 + 0 \cdot 00, 55, 0 + 0 \cdot 110038)$ = (0·1) f (0·1, 1.0055, 0.110038) = (0.1) (0.110038) Ky= 0.011 ly = hg(20th, yotk3, Zotl3) = 10-1) g (0+0-1, 1+0.0055, 0+0.110038) = [0.1) g [0.1; 1.0055, 0.110038) $= (0 - 1) \left[1 + 2(0 - 1)(1 - 0055) + (0 - 1)^{2}(0 - 110038) \right]$ ly = 0-12022 we have to find y(0.1) y(x,+h) = y,+ y6 (K,+2K2+2K3+K4) $Y(0.1) = 1 + \frac{1}{6} \left(0 + \frac{2}{0.005} + \frac{2}{0.0055} + 0.011 \right)$ y(0·1) = 1.0053 0) + ((200) G+1)(0. NOTE: Z(20+h) = Z0 + Y6 (d, + 2d2 + 2d3 + d4) $Z[0+0.1] = 0 + Y_6 (0.1+2(0.11012)+2(0.110038) + 0.12022)$ we one not not See Z(0.) and Z(0.1) = 0.110089By Runge - Kutta method, Solve 2 $\frac{d^2y}{dx} = x \left(\frac{dy}{dx}\right)^2 - y^2 \quad \text{for } x = 0.2 \quad \text{correct}$ de four decimal places, using the June dz2 initial Conditions y=1 and y=0 Es to Dec 2017 when x=0 0 BEDON

Scanned with CamScanne

 $\frac{d^2 y}{dx^2} = \frac{d^2 y}{dx^2} = \frac{d^2 y}{dx^2} - \frac{y^2}{y^2}, \quad y=1, z=0, z=0$ $p_{uz} \frac{dy}{dx} = z$ $p_{uz} \frac{dy}{dx} = z$ $p_{uz} \frac{dy}{dx} = \frac{dz}{dx}$ $\frac{d^2y}{dx} = \frac{dz}{dx}$ $\frac{d^2 y}{dx^*} = \frac{dz}{dx}$ Now given equation becomes yes $\frac{dz}{dx} = x z^2 - y^2 \quad \text{with } y = 1, z = 0 \text{ at } z_0 = 0$ hence we have dy = z and $dz = \infty z^2 - y^2$ $\mu f(x, y, z) = z, g(bc, y, z) = \infty z^2 - y^2,$ $x_0 = 0$, $y_0 = 1$, $z_0 = 0$ $2c_0 + h = 0 \circ 2$ 0+h=0.2 we shall find the following K, = hf (200, yo, Zo) ul, = hg (200, yo, Zo) = (0.2) g (0,1,0) $K_{1} = (0.2) f(0, 1, 0) = (0.2) [(0)(0)^{2} - 1]$ = (0.2) (0) - (PPPP-0) = (0.2) [-1] (PPP101PED,=-0.2// K1 = 0/1 $K_{2} = h f \left(2c_{0} + h/_{2}, y_{0} + K/_{2}, z_{0} + \ell/_{2} \right)$ $= (0 \cdot 2) f (0 \cdot 1, 1, -0 \cdot 1)$ $= (0 \cdot 2) f (0 \cdot 1, 1, -0 \cdot 1)$ = (0.2) (-0.1) Kg= - 0.02

$$J_{s} = hg(x_{0} + h/_{s}, y_{0} + K_{1/s}, z_{0} + \frac{h}{2})$$

$$= (0 \cdot 3)g(0 + 0 \cdot 3, 1 + 0/_{3}, 0 + (-0 \cdot 2))$$

$$= (0 \cdot 3)[(0 \cdot 1), (-0 \cdot 1)^{2} - (1)^{3}]$$

$$= (0 \cdot 3)[(0 \cdot 1)(-0 \cdot 1)^{2} - (1)^{3}]$$

$$J_{g} = -0 \cdot 1998//$$

$$K_{g} = hf((x_{0} + h/_{3}, y_{0} + K_{2/s}, z_{0} + \frac{d}{2}))$$

$$= (0 \cdot 3)f(0 + 0 \cdot \frac{3}{2}, 1 + (-\frac{0 \cdot 0}{3}), 0 + (-\frac{0 \cdot 1993}{2}))$$

$$= (0 \cdot 3)f(0 \cdot 1, 0 \cdot 99, -0 \cdot 0999)$$

$$K_{g} = -0 \cdot 01998//$$

$$J_{g} = hg((x_{0} + h/_{3}, y_{0} + K_{2/s}, z_{0} + \frac{d}{2}))$$

$$= (0 \cdot 3)g(0 + 1, 0 \cdot 99, 0 \cdot 0999)$$

$$K_{g} = -0 \cdot 01998//$$

$$J_{g} = hg((x_{0} + h/_{3}, y_{0} + K_{2/s}, z_{0} + \frac{d}{2}))$$

$$= (0 \cdot 3)g(0 + 1, 0 \cdot 99, 0 \cdot 0999)$$

$$= (0 \cdot 3)g(0 + 1, 0 \cdot 99, 0 \cdot 0999)$$

$$= (0 \cdot 3)[(0 \cdot 1)(0 \cdot 0999)^{2} - (0 \cdot 99)]$$

$$= (0 \cdot 3)[-0 \cdot 979101999]$$

$$J_{g} = -0 \cdot 1958//$$

$$K_{H} = hf((x_{0} + h, y_{0} + K_{3}, z_{0} + d_{3}))$$

$$= (0 \cdot 3)f(0 + 0 \cdot 3, 1 + (0 \cdot 0199)), 0 + (0 \cdot 1958))$$

$$= (0 \cdot 3)f(0 - 0 \cdot 93, 1 + (0 \cdot 0199)), 0 + (0 \cdot 1958)$$

$$= (0 \cdot 3)f(0 - 0 \cdot 93, 1 + (0 \cdot 0199)), 0 + (0 \cdot 1958)$$

$$= (0 \cdot 3)(-0 \cdot 1958)$$

$$K_{H} = -0 \cdot 0.3916$$

~

$$kr f(x, y, z) = z \quad and \quad g(x, y, z) = z^{3}$$
with $z_{0} = 0, \quad y_{0} = 10, \quad z_{0} = 5$
we shall first find the following
$$k_{1} = hf(x_{0}, y_{0}, z_{0}) \qquad u_{1} = hg(x_{0}, y_{0}, z_{0})$$

$$k_{1} = (0 \cdot 1)f(0, 10, 5) = (0 \cdot 1)g(0, 10, 5)$$

$$= (0 \cdot 1)f(0, 10, 5) = (0 \cdot 1)g(0, 10, 5)$$

$$= (0 \cdot 1)(5) = (0 \cdot 1)(10)^{3}$$

$$k_{1} = (0 \cdot 5) // = 100 //$$

$$k_{2} = hf(x_{0} + h_{2}, \quad y_{0} + ky_{2}, \quad z_{0} + dy_{2})$$

$$= (0 \cdot 1)f(0 \cdot 05, \quad 10 \cdot 25, \quad 55)$$

$$= (0 \cdot 1)f(0 \cdot 05, \quad 10 \cdot 25, \quad 55)$$

$$= (0 \cdot 1)(55)$$

$$= 5 \cdot 5 //$$

$$d_{3} = hg(x_{0} + h_{2}, \quad y_{0} + ky_{2}, \quad z_{0} + dy_{2})$$

$$= (0 \cdot 1)(10 \cdot 35)^{3}$$

$$= 107 \cdot 68 //$$

$$h_{3} = hf(x_{0} + h_{3}, \quad y_{0} + ky_{3}, \quad z_{0} + dy_{3})$$

$$= (0 \cdot 1)f(0 \cdot 05, \quad 10 \cdot 35, \quad 55)$$

$$= (0 \cdot 1)f(0 \cdot 05, \quad 10 \cdot 35, \quad 55)$$

$$= (0 \cdot 1)f(0 \cdot 05, \quad 10 \cdot 45, \quad 55)$$

$$= (0 \cdot 1)f(0 \cdot 05, \quad 10 \cdot 45, \quad 55)$$

$$= (0 \cdot 1)f(0 \cdot 05, \quad 10 \cdot 45, \quad 55)$$

$$= (0 \cdot 1)f(0 \cdot 05, \quad 10 \cdot 45, \quad 58 \cdot 84)$$

$$= (0 \cdot 1)(58 \cdot 84)$$

$$= 5 \cdot 588 4 //$$

$$d_{3} = hg(x_{0} + h_{3}, y_{0} + kx_{3}, \quad z_{0} + dy_{3})$$

$$= (0 \cdot 1)(58 \cdot 84)$$

$$= (0 \cdot 1)(18 \cdot 75)^{3}$$

$$= (0 \cdot 1)g(0 \cdot 05, \quad 18 \cdot 75, \quad 58 \cdot 84)$$

$$= (0 \cdot 1)(18 \cdot 75)^{3}$$

$$= 00 f \cdot 367$$

1

KH = hf (20+h, yo+K3, Zo+23) = (0.Df (0+0.1, 10+5.884, 5+ 207-267) = (0.) f(0.1, 15.88H, 212.267) = (0.1) (212-267) Marce core marte system =21.2267 ly = ng (xoth, yotk3, Zotl3) = (0·1)g(0·1, 15·88H, 812.267) = (0.1)(15.884)³ 400.75/ we have to Find ylow) y(x(0+h) = y0+ 1/6 (K1+2K2+2K3+K4) BO- = 10+ Y6 (0.5+ 2(5.5) + 2(5.88H) + 21.2267) y(0.1) = 17.4157 Given y'' - xy' - y = 0 with the initial Conditions y(0) = 1, y'(0) = 0, Compute Ĥ 410.2) and 4'10.2) wing fourth order June Runge Kutta method. 2018 By data y"-xy'-y=01 Soino y(0)=1, y'(0)=0 6)(80)= y(0.2)=? and y'(0.2)=? (21+22 11/2 40+1/2 20+1/2) 2d = 2m put dy = ZD. w.r. to oc $\frac{d^2 y}{dx^2} = \frac{dz}{dx}$ (1.0) (2.3) -Given equation becomes y" - 204 - 4=0

dz - xz - y=0 18 3+0[(+1 +1)] (-0] - $\frac{dz}{dz} = y + zz = \frac{1}{2} \frac{dz}{dz} = \frac{1$ Now, coe have system of equations Now, coe have $8y_{87em} + xz$ dy = z and dz = y + xz $\begin{aligned} dx \\ coith & 3^{=0}, & y_0 = 1, & Z_0 = 0 \\ dv & \beta(x, y, z) = z & and & g(x, y, z) = y + xz \\ dv & \beta(x, y, z) = z & and & g(x, y, z) = y + xz \\ coith & x_0 = 0, & y_0 = 1, & z_0 = 0 \\ coith & x_0 = 0, & y_0 = 1, & z_0 = 0 \\ coith & y_0 = 0, & z_0 = 0, & z_0 = 0 \\ coith & y_0 = 0, & z_0 = 0, & z_0 = 0 \\ coith & y_0 = 0, & z_0 = 0, & z_0 = 0 \\ coith & y_0 = 0, & z_0 = 0, & z_0 = 0 \\ coith & y_0 = 0, & z_0 = 0, & z_0 = 0 \\ coith & y_0 = 0, & z_0 = 0, & z_0 = 0 \\ coith & y_0 = 0, & z_0 = 0, & z_0 = 0, & z_0 = 0 \\ coith & y_0 = 0, & z_0 = 0, & z_0 = 0, & z_0 =$ with $x_0 = 0$, $y_0 = 1$, $z_0 = 0^{0}$ we shall kind the following $b = 0.2 - x_0$ $k_1 = h f(x_0, y_0, z_0)$ h = 0.2 - 0K, = 0.2 f (0, 1, 0) e. s =0.2(0) $K_1 = 0$ M_1 and M_2 $M_$ l, = hg (xo, 4o, Zo) l, = (0.2)9 (0, 1, 0) bonton onus $= (0.2) \int [1 + (0)(0)]$ = (0.2)(1)0= (0) E (= (0) L = 0.2/1 ? = (2.0) ? bro ? - (2.0) Kg = h f (20 + h/2, 40 + Ky, Zotly) $= h f (x_0 + h_2, y_0 + h_2, z_0 + h_2)$ = $(0 \cdot 2) f (0 + 0 \cdot 2, 1 + 0 \cdot 2, 0 + 0 \cdot 2)$ = (0.2) f (0.1, 1, 0.1) = (0.2) (0.1) = 0.02

ly = ng (20+1/2, Sot 1/2, Zot 1/2) = 10.2)9 (0.1, 1, 0.1) = (0.2)[1+(0.1)(0.0)= =0.202/ K3 = hf (x0 + h/2, y0 + K2/2, 20 + l2/2) = (0.2) \$ (0+0.2, 1+0.02, 0+0.202) = 10.2) f (0.1, 1.01, 0.101) - (0.2) (0.101) $K_{3} = 0.0202$ $k_{3} = hg(x_{0} + h_{2}, y_{0} + K_{2}y_{2}, z_{0} + d_{2}y_{2})$ $k_{3} = hg(x_{0} + h_{2}, y_{0} + K_{2}y_{2}, z_{0} + d_{2}y_{2})$ =10.2)9(0.1, 1.01, 0.101) = (0.2)[1.01+(0.1)[0.101)] 23= 0.20402 j Ku = hf (noth, Yotk3, Zotl3) = (0.2)f(0+0.2, 1+0.0202, 0+0.2000)= (0.2) f (0.2, 1.0202, 0.20002)= (0.2) (0.20402) data = 0.0408 ly = hg (xoth, yotks, Zotls) = (0.2) g (0.2, 1.0202, 0.20002) = (0.2) [1.0202+ (0.2) (0.20002)] 14 = 0.2122

Now we have to find yco. a) and y'(0.2) @ 2(0.2)) p(0) Y(x0+h) = Y0+ 1/6 (K, + 2K2 + 2K3 + K4) y(0.2) = 1+ Y6 (0+2[0.02)+2(0.0202)+0.0408 y(02) = 1.0202/1 Then we have to find y'(0.2) or Z10.2) Z(xoth) = 20 + 1/6 (l, +2l2 + 2l3 + lu) = 0 + Y6 (0.2 + 2 (0.202) + 2 (0. 20002) + 0.21 $Z(0.2) = 0.20404 \quad \textcircled{} y'(0.2) = 0.20404$ They y(0.2)=1:0202 and y'(0.2)=0.20404 @ obtain the value of sc and dr cohen $\frac{dt}{dt} = t \frac{dx}{dt} = t \frac{dx}{dt} - 4x \text{ and } x = 3,$ dx = 0 cohen t = 0 initially. Use 4th dt order Runge kutta method. order mu. <u>Boino</u> By data $\frac{d^{2}x}{dt^{2}} = t \frac{dx}{dt} - 4x, \quad x = 3, \quad dx = 0, \quad x = 0$ par dz = y dt $D \cdot u \cdot r \cdot t t$ dtd'2 = dy 14 = 0.2122 given equation becomes

dy = 1 y - 42 (ana) - (co)) - e (co)) pence we have System of equations ence we and dy = ty - 4x $dx_{1t} = y$ and dy = ty - 4x $with f_0=0, x_0=3, dx=y_0=0$ $t_0 + h = 0.1$ (e) 12 set is a droit ide ph h=0.1-to (1111- 22888 p.G. (1.0) + (1.0) h=0.1-0 h=001/ ty = f(t, x, y) = y and g(t, x, y) = ty - 4xwith $t_0 = 0$, $x_0 = 3$, $y_0 = 0$ we shall find the following K,=hflto, xo, yo) d,= hg(to, xo, yo) = (0.1) g (0, 3, 0) - $= (0 \cdot i) \neq (0, 3, 0)$ = (0.1) [(0)(0) - u(3)]= (0.1)(0) l,=0-12 =0 Kg= hf (to + h/2, xo + K1/2, yo + dy) = (0.1) f (0.05, 3, -0.6)= (0.1) (-0.6) =-0.06 da = hg (toth/2, xotky, yotly) = (0.1) 9 (0.05, 3, -0.6) = (0-1) [(0.05)(-0.6)-12] = -1.203 $k_3 = h \beta (t_0 + h_{12}, x_0 + k_{2/2}, y_0 + k_{2/2})$ = (0·1) f (0.05, 2.97, -0.6015)

xH-H70 K3 = (0.1) (-0.6015) K3 = -0.06015 000000 0000 $u_{3} = -0.06015$ $u_{3} = (0.1) [(0.05)(-0.6015) - u \times 9.97]$ 111 h 0, 20 = 3, 24 lg = -10191 Ky = hg (toth, 20+K3, yo+l3) = (0.1) f (0.1, 2.93985, -1.191) = (0-1) (-1.191) Ky = - 0.1191 lu = log (to th, xo + k3, yo + l3) = (0.1)9 (0.1, 8.93985, -1.191) $= (0 \cdot 1) [(0 \cdot 1) (-1 \cdot 191) - u \times 2.93985]$ = -1.18205 we shau Kizhfler 20, 40) ly = -1.18785 $\mathcal{D}(lt_0+h) = \mathcal{I}_0 + Y_6 \left(K_1 + 2K_2 + 2K_3 + K_4 \right)$ 2(001)= 2.9401 y (to + h) = yo + 1/6 (u, + 2dg + 2dg + dy) tot 11 ze y(0.1) = -1.19643 - ing (207 ing, x0 + K/2, 30 + 5/2) (0-1) g (0.05, 3, -0.6) = [e1-(2-2-)(-2-0)-12]-

Milne's Method Method to goive the ODE y"= g(x,y,y') given a set of four initial values for y and y'. y and y'. O consider y"= g (x, y, y') with initial Condition y(xo) = yo and y'(xo) = yo' @ put y'= dy = Z D. W. m. to x $y'' = d^2 y = dz = z'$. y"=z' the given differential equation become & Z' = g(x, y, z) - with initial condition y(xo)= 40 and Z(xo)= Zo 3 The given data's are set of & values i.e xo, x1, x2, x3, x4 Set of y values yo, y1, y2, y3, Set of y'or z valuey zo, z1, Z2, Z3 @ First apply predictor formula to find gu(P) and Zy(P) cohere $y_{4}^{(P)} = y_{0} + \frac{4h}{3} \left(2z_{1} - z_{2} + 2z_{3} \right)$ $Z_{4}^{(P)} = Z_{0} + \frac{4h}{3} \left(2Z_{1}^{\prime} - Z_{2}^{\prime} + 2Z_{3}^{\prime} \right)$ $() we compute <math>Z_4 = g(x_4, y_4, z_4)$ and then apply corrector formula cohere y' = y2 + 1/3 (3 + HZ3 + Z4) $Z_4^{(c)} = Z_2 + h_3(Z_2 + HZ_3 + Z_4)$ (for better accuracy apply corrector formula repeatedly

Dune dry milne's method to solve gune $d^{2}y = 1 + dy$ given the following $dx^{2} = 1 + dy$ given the following given the following $dx^{2} = 1 + dy$ given the fo 0.2 0.3 0.1 20 0 1.1103 1.2027 1.399 1.2103 1.4H27 1.699 y So, By data $\frac{d^2y}{dx^2} = 1 + \frac{dy}{dx}$ put y' = dy = Zwe obtain $y''=d^2y=dz=z'$, y''=z'Given equation become 8 $\frac{dz}{dx} = 1 + Z$ Brite al Brite Z'=1+Z x $x_0=0$ $x_1=0.1$ $x_2=0.2$ $x_3=0.3$ y yo=1 y,=1.1103 y2=1-2427 y3=1-399 y'= Z Zo=1 Z,=1.2103 Za=1.24427 Z3=1-699 $y''=z' z'_{0} = 1 + z_{0} z'_{1} = 1 + z_{1} z'_{0} = 1 + z_{2} z'_{0} = 1 + z_{0} z'_{0} = 1 + z'_{0} z$ Yup = yo + Hh (2Z1 - Z2 + 2Z3) at a tel (a) for britter accuracy

 $y_{4}^{(P)} = 1 + \frac{H(0.1)}{3} \left[2(1.2103) - 1.4427 + 2(1.699) \right]$ y(P) = 1.58345 $Z_{H}^{(p)} = Z_{0} + \frac{Hh}{3} \left(2 Z_{1}' - Z_{2}' + 2 Z_{3}' \right)$ 19)) $Z_{4}^{(P)} = 1 + \frac{H(0.1)}{3} \left(2(2.2103) - (2.4427) + 2(2.699) \right)$ 24 = 1.98345 24 = 1+ 24 15) 24'=1+1.98345 => Z'4=2.98345 NOW, we consider milne's corrector formella $y_{4}^{(1)} = y_{2} + h_{3}(z_{2} + 4z_{3} + z_{4})$ $= 1 \cdot 2 \cdot u \cdot 27 + 0 \cdot 1 \left(1 \cdot u \cdot u \cdot 27 + u \cdot (1 \cdot 699) + 1 \cdot 98345 \right) 3 \cdot 15$ = 1.58344 $Z_{4}^{(c)} = Z_{2} + h_{3}(Z_{2}' + HZ_{3}' + Z_{4}')$ = 1.4u27 + 0.1 (2.4u27 + 4(2.699) + 2.98345)Substituting again in corrector formula $y_{u}^{(c)} = 1.2u27 + \frac{0.1}{3} \begin{bmatrix} 1.4u27 + 4(1.699) + \\ 1.983u4 \end{bmatrix}$ 344 yy (1) = 1.58344 Thuy y(0.4)=1.58344 :44) = +4427 + 312.00 10 2 = - 98344

Apply milline's method to compute \$10.8) Given that d'y = 1-94 dy and the following table of initial values they year your stand 0.2 0.4 0.6 0.02 0.0795 0.1762 O Martin x 9 0-1996 0.3937 0.5689 0 y'an 0 Apply corrector formula hoice in pryenting the value of y at 20=0.8 Some Given $\frac{d^2y}{dx^2} = 1 - 2y \frac{dy}{dx}$ 3.98 3US given equation becomes 20 = 1.983440 Z'= 1-24Z $x_1 = 0.2$ $y_2 = 0.4$ $x_3 = 0.6$ X0=0 X $y_0 = 0$ $y_1 = 0.02$ $y_2 = 0.0795$ $y_3 = 0.1762$ y'= Z Zo = 0 Z, = 0.1996 Z2 = 0.3937 Z3 = 0.5689 $\begin{array}{c} y'' = z' & z'_0 = 1 - 24_0 z_0 & z'_1 = 1 - 24_1 z_1 \\ = 1 - 24 z & z'_0 = 1 - 2(0)^{(0)} \\ = 1 - 24 z & z'_0 = 1 \end{array} \begin{array}{c} z'_1 = 0 \cdot 992 & z'_2 = 1 - 24_2 z_2 \\ z'_2 = 0 \cdot 9374 \\ z'_3 = 0 \cdot 7995 \end{array}$ we first consider milne's predictor formula Y" = yo + uh (22, - 2 + 223) = 0 + H(0.2)(3(0.1996) - (0.3937) + 2(0.5689))98344) Y"= 0.30488

21 = Zo + 4h (22, - Z'2 + 2Z'3) = 0 + 4(0.2) (2(0.992) - (0.9374) + 2(0.7995)) $z_{1}^{(p)} = 0.70549$ to the halter with of Nova -Zy = 1 - 244 Z4 PAGE NO. DATE =1-2 (0.30488) (0.70549) la = 0.56982 Now we consider milne's corrector formela 105495 $y_{\mu}^{(c)} = y_2 + h_{3}(z_2 + Hz_3 + z_4)$ =0.0795+0.2(0.3937+410.5689)+=0.0795+0.2(0.3937+410.5689)+56982 5 = 0.30448 $z_{4}^{(c)} = z_{2} + h_{3} (z'_{2} + 4z'_{3} + z'_{4})$ (0.707) =0.3937+0.2(0.9374+4(0.7995)+38) Substituting the appropriate value $Y_{4}^{(c)} = 0.0795 + \frac{0.2}{3} \left(\begin{array}{c} 0.3937 + 4(0.5689) \\ +0.70738 \end{array} \right)$ in corrector formula 3) = 0.3046 They y(0.8)=0.3046

Obtain the Solution of the equation 2 d'y = Hx + dy by computing the value et the dependent Variable corresponding to the value 1.4 of the independent variable by applying milnes method wing the following data 1 101 102 207514 2 202156 204649 207514 2 202178 206725 20057 2 g By data $2d^2y = 4x + dy$ $dx^2 \quad dx$ Soino 1 a Divide both sides by 2 $d^2y = 4x + \frac{dy}{\partial x}$ $\frac{\partial^2 y}{\partial x^2} = \frac{u x}{2} + \frac{y}{2} \frac{\partial y}{\partial x}$ $\frac{d^2y}{dx^2} = \frac{\partial x}{\partial x} + \frac{y}{2} \frac{dy}{dx} = 0$ = 0.0395+0.2 (0.3937+4 (0.5659)+0.70932) put y'= dy = Z D. w. r. to \mathcal{X} $y'' = d^2 y = dz = z' \Rightarrow y'' = z'$ $\exists x^2 = dz$ 4 co = 0 - 3046 Now eqn @ become & epoc.o. $Z = 2x + \frac{1}{2}$ $Z' = 2x + \frac{2}{9}$

 $x_1 = 1 \cdot 1$ $x_2 = 1 \cdot 2$ $x_3 = 1 \cdot 3$ 20=1 Yo = 2 $y_1 = 2.2156 \ y_2 = 2.4649 \ y_3 = 2.7514$ $\frac{y'=Z}{y'=Z} = 2 \qquad Z_{1} = 2 \cdot 3178 \qquad Z_{2} = 2 \cdot 6725 \qquad Z_{3} = 3 \cdot 0657$ $\frac{y'=Z}{z'_{1}} = 2x_{0} + \frac{z_{0}}{2} \qquad Z_{1}' = 2x_{1} + \frac{z_{1}}{2} \qquad Z_{3}' = 2x_{2} + \frac{z_{2}}{2} \qquad Z_{3}' = 2x_{3} + \frac{z_{3}}{2} \qquad Z_{3}' = 2x_{3}' + \frac{z_{3}'}{2} \qquad Z_{3}' = 2x_{3}' + \frac{z_{3}'}{2} \qquad Z_{3$ シャンシューヨ マニョ 3・3589 マタ=3・73625 マコー 3 ラ we first Consider milne's predictor $y_{\mu}^{p} = y_{0} + \frac{Hh}{3} (2z_{1} - z_{2} + 2z_{3})$ = 2 + 4(0.1) (2(2.3178) - 2.6725 + 2(3.0657))y"= 3.0793 Pf3.8=00H is $Z_{4}^{(P)} = Z_{0} + \frac{Hh}{3} (2Z_{1}' - Z_{2}' + 2Z_{3})$ $= 2 + 4(0.1) \left(2(3.3589) - (3.73625) + 3(4.13285) \right)$ $Z_{4}^{(P)} = 3.4996$ Z' = 2x4 + 24/2 3000 $=2(1.4)+\frac{3.4996}{2}$ Zy = H.5498 8+'8 x+"8. otob Now, we consider milne's corrector formula $y_{4}^{(1)} = y_{2} + h_{3}(z_{2} + Hz_{3} + Z_{4})$ $= 2 \cdot 4649 + \frac{0 \cdot 1}{3} \left(2 \cdot 6725 + 4 \left(8 \cdot 0657 \right) + 3 \cdot 4996 \right)$ = 3.07939

y (1) = 3.0794 $Z_{4}^{(i)} = Z_2 + h_3 (Z_2 + 4Z_3 + Z_4)$ $= 2.6725 + \frac{0.1}{3} \left(3.73625 + 4 \left(4.13285 \right) + 4.5498 \right)$ Zy = 3.4997 onggain apply corrector formula ying 411 1 221 - 2 appropriate valley Yuco = y2 + h/3 (22 + 423 + 24) $= \frac{2 \cdot 4649 + 0 \cdot 1}{3} \left(2 \cdot 6725 + 4(3 \cdot 0657) + 3 \cdot 4997 \right)$ Y"= 3.0794 Given the ODE y"+xy' + y=0 and the following table of Initial values, Compute ylow, by applying milne's method. JPPH.E = 0.2 0.1 0.3 0 X 0.995 0.9801 0.956 4 -0.0995 -0.196 -0.2867 y 0 By data y"+xy'+y=OHENE is Solo 12 Neuro de contralementes l'étérés comes deput $y' = dy = Z^{+} + Z^{+} + Z^{+}$ we obtain $y'' = d^2y = d^2 = Z$ = Z Homes y"=z'

given equation becomes $z' = -\infty z - y$ z' = -+ y $z' = -(\infty z + y)$ $\mathcal{Z}_0 = 0$ $x_1 = 0.1$ $x_2 = 0.2$ 23=0.3 x Yo=1 Y,=0.995 Y2=0.9801 Y3=0.956 $z_{0} = 0$ $Z_{1} = -0.0995$ $z_{2} = -0.196$ $z_{3} = -0.2867$ y'= 2 $z_{1}^{\prime} = -(xz_{1}y) z_{0}^{\prime} = -1 \quad z_{1}^{\prime} = -0.985 \quad z_{2}^{\prime} = -0.941 \quad z_{3}^{\prime} = -0.87$ we fight consider milne's predictor formula $y_{u}^{(P)} = y_{0} + \frac{4h}{3} \left(\frac{9z_{1} - z_{2} + 2z_{3}}{3} \right)$ = 1 + 4 (0.1) (2(-0.0995) - (-0.196) + 2(-0.2867))= 0.923155 $z_{4}^{(p)} = z_{0} + \frac{4h}{3} \left(2z_{1}^{\prime} - \frac{y_{1}^{\prime}}{2} + 2z_{3}^{\prime} \right)$ $= 0 + 4(0.1) \left(2(-0.985) - (-0.941) + 2(-0.87) \right)$ $P_{FI} = -0.3692$ (1)800.0 (0) 4(0)=1, y'(0.2)=1.041, $Z_{4} = -(\chi_{4} Z_{4} + Y_{4})$ 2=1.468 $= -(0.4 \times -0.3692 + 0.9231)^{2}$ $= -(0.4 \times -0.3692 + 0.9231)^{2}$ 24 = -0.7754 Next we have milne's corrector formula $y_{4}^{(c)} = y_{2} + h_{3}(z_{2} + 4z_{3} + z_{4})$ $= 0.980 + \frac{0.1}{3} \left(-0.196 + 4(-0.2867) + (-0.3692) \right)$ $y_{4}^{(c)} = 0.9829$

 $y_{4}^{(c)} = 0.9229$ Ramond noiteups mun $z_4^{(c)} = z_8 + b_3 (z_2' + H z_3' + z_4')$ = -0.196 +0.1 [-0.941 + 4(-0.87) + (-0.775) Z(C)= -0.3692 OPPOTE ony gain put this in corrector formula $\mathcal{Y}_{4}^{(c)} = 0.980 + \frac{0.1}{3} \left[-0.196 + H(-0.2867) - 0.3692 \right]$ They y(0.4) = 0.9229 Applying milne's predictor and corrector formula compute ylo.8) given that Doyourley satisfies the equation y"= 244' and y and y' are governed by the forrowing values. Y(0) = 0, Y(0.2) = 0.2027 Y(0.4) = 0.4228 y(0.6) = 0.6841 Sp y'(0)=1, y'(0.2)=1.041, y'(0.4)=1.179 9'(0.6) = 1.468 (Alt of up Apply corrector formula twice Given y"= 299' - @ Soin; and put y' = z $p_{10} \cdot q_{10} \cdot t_{00} \cdot p_{10}$ y'' = z'

000 2=242 $x_0 = 0$ D x=0.2 x=0.4 x=0.6 y y0=0 Y1=0.2027 Y2=0.4228 Y3=0.6841 y'= Z Bo = 1 Z, =1.041 Z2=1.179 Z3=1.468 1=2= 242 20'=0 $z_{1}'=0.422$ $z_{2}'=0.997$ $z_{3}'=2.009$ milne's predictor formula y (P) = yo + 4h (22, - Z2 + 2Z3) $y_u^{(P)} = 1.0237$ Z(P) = Zo + 4h (22', - Z' + 2Z') = 2.0307 21 = 2 Yy Zy 24'= 4.1577 corrector formula $y_{4}^{(c)} = y_{2} + h_{3} (z_{2} + 4z_{3} + z_{4})$ =1.0282 $z_{4}^{(c)} = z_{2} + h_{3} (z_{2} + 4z_{3} + z_{4})$ = 2.0584 applying conector formula we have $y_{u}^{(c)} = 1.03009$ They y(0.8) = 1.0301

module-05 P MORDINON FAGE NO. Continuation Variation of a function Let y consider a function of x, y, y. 1.e f(x, y, y') = f(x, y(x), y'(x))Suppose we give small increments to y and y' so that they become respectively, ythd (n), y'thd'(n) h is small parameter independent of x. Now we have $f(r, y+h_{\mathcal{L}}(x), y'+h_{\mathcal{L}}(x)) = f(x, y, y') +$ (hx 2 + hx 2) ft 1/hx 2 + hx 2) ft. by ying Taylor's expansion. [y and y' are treated of Variables Since 20 is fixed Neglecting second and higher degree terms Since h is small parameter, we have f(x, y+hx(x), y'+hx'(x)) - f(x, y, y')= $h \alpha \frac{\partial f}{\partial y} + h \alpha' \frac{\partial f}{\partial y'}$ Denoting the LHS of this equation by of mont train we have $\delta f = h x \frac{\partial f}{\partial y} + h x' \frac{\partial f}{\partial y'} \longrightarrow 0$

of is called Vagiation of PORENO. have from O 000 $\delta g = h \alpha \frac{\partial y}{\partial y} + h \alpha' \frac{\partial y}{\partial y'}$ oy = hx + hx . (0) dy = hd : /hd = 6y/ $\delta y' = h \alpha \frac{\partial y'}{\partial y} + h \alpha' \frac{\partial y'}{\partial y'}$ Sy'= hd. 0 + hd'(1) Sy'=hd' $|h\alpha'=\delta y'|$ @ and @ in O we have Using $\delta f = \frac{\partial f}{\partial y} \delta y + \frac{\partial f}{\partial y'} \delta y' - Q$ NOTE: Geometrically y(x) and y(x) +hd (20) represents two neighbouring curves. Variation in f represents the change in f from curve to curve. we now proceed to cetablish two important properties Connected variational operator o, differen with operator dux & integral S -tial ned with CamScan

property - I FAGE NO $\delta\left(\frac{dy}{dx}\right) = \frac{d}{dx}\left(\delta y\right)$ by wing (3) proof: $\delta(\frac{dy}{dx}) = \delta y' = hd'$ $=h\frac{dx}{dx}$ = d(hd) Since his independent of $= \frac{d}{dx}(\delta y)$ by cying (2) $\therefore \left[\delta\left(\frac{dy}{dx}\right) = \frac{d}{dx} \left(\delta y \right) \right]$ Functional 8 let S be a set of functions of a Single Variable & defined over an interval Then any function which assigns to each function in & a unique real value 18 called a functional. In other words functional is a mapping from functions to real consider a function of the form f(x, y, y') where y' is derivative & y $\omega \cdot \gamma \cdot to x and x \in (x_1, x_2)$

The integral I(y) = JE(x, y, y) dx is a functional [a standard form] It can be easily seen that for every y(x), I(y) give a real value. Examply of functional 8 $O \int 2c + (4')^2 dx O \int V_{1+(4)^2}^{\infty} dx$ $If I = \int_{x_1}^{x_2} f(x, y, y') dx \quad then$ $\delta \int_{x}^{x_{2}} f(x, y, y') dx = \int_{x}^{x_{2}} \delta f(x, y, y') dx$ ic to say that the Variational of a functional associated with fex, y, y') is equal to the functional associated with Vaniation of f. $Proof: I = \int_{1}^{2} f(x, y, y') dx y functional$ Since the Value of I dependy on y and y' we have by wing the regult connected with Variation $\delta f = \frac{\partial f}{\partial y} \delta y + \frac{\partial f}{\partial y'} \delta y'$

 $\delta I = \frac{\partial I}{\partial y} \, \delta y + \frac{\partial I}{\partial y'} \, \delta y'$ $\delta I = \left\{ \int_{\partial y}^{\infty} \left[F(x, y, y') \right] dx \right\} \delta y + \left\{ \int_{\partial y'}^{\infty} \left[F(x, y, y') \right] dx \right\}$ $i \cdot \delta I = \int \frac{\partial f}{\partial y} \, dy \, dx + \int \frac{\partial f}{\partial y'} \, dy' \, dx$ $\partial I = \int \left[\frac{\partial f}{\partial y} \, \partial y + \frac{\partial f}{\partial y'} \, \partial y' \right] dx$ SI= St dx Thuy $\delta \int_{-1}^{\infty} f(x, y, y') dx = \int \delta f(x, y, y') dx$ [Dec 17, 18] Euler's Equation Statement: A necessary condition for the integral $I = \begin{pmatrix} x_2 \\ p(x, y, y') dx \\ where$ y(x,)=y, and x, y(x,)=y, to be an extremum is that $\partial f - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0 \left[Euler's equation \right]$ to independent of Bat

yezythaca hales preserver PAGENO roof DATE y 222 Let I be an extremum along gome curve y=y(x) passing through p(x1, y1) and 02 (x2, 42) A180, let y=y(x) + hd(x) be the neighbouring curve (where his small) joining these points so that we must have d(x,)=0 at p and d(x2)=0 at on 0 when h=0 these two carves coincide thus making I an extremum. when h=0 these two curves coincide thus making I an extremum. i.e to say that $I = \int_{-\infty}^{\infty} f(x, y(x) + hd(x), y'(x) + hd'(x)) dx$ x, Applying Chain rule for the partial derivative in RHS, we have $\frac{dI}{dh} = \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial x}{\partial h} + \frac{\partial f}{\partial y} & \frac{\partial y}{\partial h} + \frac{\partial f}{\partial y'} & \frac{\partial y'}{\partial h} \end{bmatrix}$

But his independent of x and hence $\partial z = 0$

Let us consider (1) and Dwg. T to 2 · y'= y'(x) + h x'(x) - @ Also, we have from (). Dy = x(x) and from (A) $\frac{\partial \theta'}{\partial h} = \chi'(\chi)$ using these results in (3) we have $\frac{dI}{dh} = \int_{x_1}^{x_2} \left[\frac{\partial f}{\partial y} \chi(x) + \frac{\partial f}{\partial y'} \chi'(x) \right] dx$ keeping the fight term in the RHS 9 ay it is and integrating the second term by parts we have $\frac{dI}{dh} = \int_{x_1}^{x_2} \frac{\partial f}{\partial y} \chi(x) dx + \int_{y_1}^{y_2} \frac{\partial f}{\partial y} \chi(x) \int_{x_1}^{x_2} \frac{\partial f}{\partial x} \left(\frac{\partial f}{\partial y'} \right) dx \\ = \int_{x_1}^{x_2} \frac{\partial f}{\partial x} \chi(x) dx + \int_{y_2}^{y_2} \frac{\partial f}{\partial y'} \left(\frac{\partial f}{\partial y'} \right) dx \\ = \int_{x_1}^{x_2} \frac{\partial f}{\partial x} \chi(x) dx + \int_{y_2}^{y_2} \frac{\partial f}{\partial y'} \left(\frac{\partial f}{\partial y'} \right) dx$ $= \int_{y_1}^{x_2} \frac{\partial f}{\partial y} dx + \int_{y_1}^{\partial f} \frac{\partial f}{\partial y_1} dx_2 - \frac{\partial f}{\partial y_1} dx_1$ $= \int_{y_1}^{y_2} \frac{\partial f}{\partial y_1} dx + \int_{y_1}^{\partial f} \frac{\partial f}{\partial y_1} dx + \int_{y_1}^{y_2} \frac{\partial f}{\partial y_1} dx + \int_{y_2}^{y_2} \frac{\partial f}{\partial y_2} dx + \int_{y_1}^{y_2} \frac{\partial f}{\partial y_1} dx + \int_{y_2}^{y_2} \frac{\partial f}{\partial y_1} dx + \int_{y_2}^{y_2} \frac{\partial f}{\partial y_2} dx + \int_{y_2$ from (2) and we have by combining Z the two integrals. $\frac{dI}{dh} = \int_{0}^{\infty} \left[\frac{\partial f}{\partial y} - \frac{d}{\partial x} \left(\frac{\partial f}{\partial y} \right) \right] \alpha(x) dx$ But we have already stated that dI mußt be Zero when h=0 for dh x, I to be an extremum. hence integrand in the RHS must be Zero

Since 2 (20) & arbitary we must have $\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y^{1}} \right) = 0$ Thy is the required Euler's equation the extremum of functional $I = \int_{f(x,y,y)}^{x_2}$ cb 0. Theorem: The necessary Condition for the functional $I = \int_{x_2}^{x_2} f(x, y, y') dx$ to be an extremum is SI=0 Proof: Retrace the Steps of in the derivation of Euler's equation up to the stage of arriving at equation (5) $\frac{dI}{dh} = \int \left[\frac{\partial f}{\partial y} x(x) + \frac{\partial f}{\partial y'} x'(x) \right] dx - \frac{\partial f}{\partial y'} x'(x) = \int \left[\frac{\partial f}{\partial y'} x'(x) + \frac{\partial f}{\partial y'} x'(x) \right] dx$ -3 coe have $\delta I = \delta \int f(x, y, y) dx$ Since Sand fare commutative with each other we have $\delta I = \int \delta F(x, y, y') dx$ lying the expression for the Variation of f being of in the RHS, we have $\delta I = \int^{x_2} \left[\frac{\partial f}{\partial y} \delta y + \frac{\partial f}{\partial y'} \delta y' \right] dx$

But by = hd (2c) and by = hd(x) OI= [[OF ha(x) + Of ha'(x)]dx $\delta I = h \int \left[\frac{\partial F}{\partial y} d(x) + \frac{\partial F}{\partial y'} d'(x) \right] dx$ dx i.e di=hdi, by equation @ But $\frac{dz}{dh} = 0$ when h = 0 is a necessary Condition for I to be an extremum. They dI = 0 also represents the necessary Condition for the functional I to be an extremum. Problems: -O find the extremal of the functional $\int (y' + x^2 y'^2) dx$ Boive the Euler's equation for the function -nal [1+x'y')y'dx [June 2017, 18] $\frac{8010}{2}$ Let, $f(x, y, y') = y' + x^2 y'^2$ Euler's equation $\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$ becomes

 $0 - \frac{d}{dx} \left(1 + \frac{x^2}{2y'} \right) = 0$ PAGENO.DATE $\frac{d}{dx}(1+2x^2y')=0$ Integrating w.r. to x we get Itazy = K, where K, y constant 2xy = K1-1 $y' = \frac{K_i - 1}{2r^2}$ on integration w.r. to x $y = \frac{K_1 - 1}{2} \int \frac{1}{2^2} dx + c_2$ $y = \frac{K_1 - 1}{2} \times \frac{-1}{2} + \frac{C_2}{2}$ $y = \frac{1 - K_1}{\vartheta x} + C_2$ $y = \frac{C_1}{x} + \frac{C_2}{2}$ where $C_1 = \frac{1 - K_1}{2}$ nd the function y which makey the integral $\int (1+xy'+xy') dx$ an extremum. x,

 $\frac{goino}{2} \text{ Let } f(x, y, y') = 1 + xy + xy^{2}$ Eulears equation, $\frac{\partial f}{\partial y} = \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) = 0$, become 8 $0 - \frac{d}{dx} \left(\frac{x}{x} + \frac{y}{x} \frac{y'}{y} \right) = 0$ $\frac{d}{dx}(x+2xy')=0$ on integration w.r. to z x + 2xy' = K, where K, y constant $gxy' = K_1 - \infty$ $y' = \frac{k_{,} - x}{2x}$ or a Roa (the) D $\frac{dy}{dx} = \frac{\kappa_1}{\partial x} - \frac{\chi}{\partial \chi}$ $\frac{dy}{dz} = \frac{K_I}{\partial x} - \frac{1}{2}$ on integration $\mathcal{Y} = \begin{pmatrix} K_1 - \frac{1}{2} \\ \frac{1}{2x} \end{pmatrix} dx + C_2$ y = 1/2 findx - 2 [1.dx + 5] Y = Kyugoc - 1/2 + C2

 $y = c_1 \log px - \frac{x}{2} + c_2$ where $\frac{q}{2} = \frac{\kappa_1/2}{Nord}$ 3 Find the extremal of the functions $\int (y^2 + y^2 + 2ye^{x}) dx$ Soine Let, F(x, y, y') = y2 + y2 + 24ex Euler's equation, $\frac{\partial F}{\partial y} - \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) = 0$ become 8 $(2y+2c^{x})-\frac{d}{dr}(2y')=0$ $\frac{d}{dx}(2y') = 2y + 2e^{x}$ $\partial \frac{d}{dx} \left(\frac{dy}{dx} \right) = 2y + 2e^{\alpha}$ or $\partial y'' = \partial y + 2e^{\alpha}$ $\partial \cdot d^2 y = 2y + 2e^{\chi} \quad \textcircled{g}'' = 2y + e^{\chi}$ + Both Sidey by 2 $dy = y + e^{x}$ $\frac{d^2y}{dz^2} - y = e^{\alpha} \Rightarrow D^2y - y = e^{\alpha}$ $(D^2 - y) = e^{\chi}$ where $D = \frac{d}{d\chi}$ A.E ig m2-1=0 .. m= ±1 hence CP, yo = c, ex + gex

 $p_{I} \neq y_{P} = \frac{\phi(x)}{f(D)}$ PAGE NO. $y_P = \frac{e^{\chi}}{2}$ Ruplace D by -a i.e i.e D by -1 $y_p = \frac{e^{\chi}}{(-1)^2 - 1} = \frac{e^{\chi}}{0} (0\gamma = 0)$ If Dr y Zero diff. Dr and x'y x to Nor $y_p = \frac{xe^{2c}}{p}$ $y_p = \frac{x_2}{2} \int e^x dx$ Yp = x/2 ex we have y = yet yp $y = c_1 e^{\chi} + c_2 e^{-\chi} + x e^{\chi}_2$ G Find the angue on which the following out functional [[(y) + 12xy]dx with y(0)=0 and y(1)=1 can be determined. $\frac{g_{01}}{2} = \int \left[(y')^{2} + 12 x y \right] dx$ 0000 $f(y', y', y') = (y')^2 + 12xy$

Euler's equation Nora PAGENO DATE $\frac{\partial f}{\partial y} - \frac{d}{dz} \left(\frac{\partial f}{\partial y'} \right) = 0$ (2y') = 0122 - d (2y) = 0 12x - 2y'' = 0 $12z - \frac{d}{dz}\left(2 \cdot \frac{dy}{dz}\right) = 0$ 12x - 2. dy =0 $12x = 2d^2y$ dry = 6x and integrating co. r. to x we get 15 $\frac{dy}{dx} = 6x^2 + c_1$ $\frac{d4}{dx} = 3x^2 + C_1$ Again integrating wir to x $y = 3x_3^3 + c_1 x + c_2$ $y = x^3 + c_1 x + c_2 - \textcircled{}$ Using the condition y=0 at x=0 in (*) $0 = 0 + 0 + C_2 = C_2 = 0/1$ and we you at x = 1 1=1+9,+0 $C_{1} = 1 - 1 \Rightarrow C_{1} = 0$

put c, and Cg in (*) y= 2 is the required augue 5 selve the Variational problem of (12xy + y') dx under the conditions ·Dec] Eulery equation of - d (of)=0 $12x - \frac{d}{dx}(2y') = 0$ $12x - 2d^{2}y = 0$ (F) 12x - 2y'' = 0 $\frac{d^2 y}{dx^2} = 6 x$ $\frac{d^2 y}{dx^2} = 6 x$ Integrating co.q. to x coe get 2 $\frac{dy}{dx} = 6x_{12}^2 + c_1$ $dy = 3x^2 + C,$ dx integrating co.r. to x $y = x^3 + c_1 x + c_2 - *$ ye the condition y=3 at x=0 in @ 3=0+0+52=3/1 put x=1, y=6 in B $9.6 = 1 + c_1 + 3 = c_1 = 6 - 4 = 2$ C1=2

put c, and C, in @ y= x3 + 2x + 3 4 the PAGENO. DATE required auque Do yourself * Solve the Variational problem: of (x+y+y') dx=0 under the condition & y(0)=1 and y(1)=2. $\frac{\partial y}{\partial y} = \frac{y}{4} + \frac{3}{4}x + 1$ $C_g = 1$ $C_1 = 3/L_1$ (S.T the functional $\int (y^2 + z^2y') dz$ assumy extreme valuy, on the Straight dine y=x soing det, f(x, y, y') = y' + x'y'Euler's equation, $\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$ $\frac{\partial y}{\partial x} - \frac{d}{\partial x} (x^2) = 0$ $d(x^2) = gy$ $\partial x = \beta y$ x = y @ y=x is Straight dine

(F) S. T J'y'y'dx hay an extremam when yex is of the form G. Vate, Euleris equation $\frac{\partial f}{\partial y} - \frac{d}{\partial x} \left(\frac{\partial f}{\partial y} \right) = 0$ $2yy' - \frac{d}{dx}(2y'y') = 0$ $yy' - \frac{d}{dx}(y'y') = 0$ yy' - (y'y'' + 2yy'y') = 0 $44' - (4^2 + 244') = 0$ -y2y"-yy'=0 y'y" + yy' = 0 33+33=0 8[49"+4']=0 (÷B·S by y) $yy'' + y'^{2} = 0$ $\frac{d}{dx} \begin{bmatrix} yy' \end{bmatrix} = 0$ on integration we get $\dot{y}\dot{y}'=K,$ $y dy = K_1$ ydy=K,dx Jydy=K, SIdx + K2

 $y_{0}^{2} = K_{1} \propto + K_{2}$ DATE $y^* = Q(K_1 x + K_2)$ $y = \sqrt{\partial(\kappa_1 x + \kappa_2)}$ $y = \sqrt{\partial K_1 \left(x + \frac{K_2}{K_1} \right)}$ let in denote C, = V2K, and C2 = K2/K, They y= C, Voc+ C2 ③ S.T tom extremal of ∫ (y') dz ij expressible in the form y=acbx Solo Let $f(x, y, y') = \left(\frac{y}{y}\right)^2$ f(x, y, y') = y'Euler's equation, of -d (of)=0 $-\frac{\partial}{\partial y^{3}} y' - \frac{d}{\partial x} \left(\frac{1}{y^{2}} \times \partial y' \right) = 0$ $-2\left[+\frac{y'}{y^3}+\frac{d}{dx}\left(\frac{y'}{y^2}\right)\right]=0$

by -2 $\frac{y}{y^3} + \frac{d}{dx} \left(\frac{y'}{y^2} \right) = 0$ $\frac{y'}{y^3} + \frac{y'y' - 2yy'y'}{y^3} = 0$ $\frac{y'}{y^{3}} + \frac{y^{2}y'' - 2yy'^{2}}{y^{4}} = 0$ + (44"-24") = 0 $\frac{y'}{y^3} + \frac{yy'' - 2y'^2}{y^3} = 0$ y"+ yy"-2y' =0 43 y'' + yy'' - 2y' = 0yy"-y'=0 Now it can be put in the form $\frac{d}{dx}\left(\frac{y'}{y}\right) = 0 \quad \theta n \quad integration \quad co. r. to x$ y = C

ogain integrate hence, (y dx = Sc, dx + C2 Move - $\log y = c_1 x + c_2$ y=e . e . e . e y = aebx where a=e^{C2} and b= G Find the curve on which the functional functional (y'-y'+2xy)dx with y(0)=y(1/2)=0 can be extremised Solus Let f(x, y, y') = y' - y' + 2xyEulery equation $\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$ $-2y+2x-\frac{d}{dx}(2y')=0$ $-y + x - \frac{d}{dx}(y') = 0$ -y + x - y'' = 0y'' + y = x $d^{2}y + y = 2c \Rightarrow D^{2}y + y = x$ $(D^{2}+1)y=\infty$

Scanned with CamScanne

where D= Vax AEY mº +1=0 > m= -> m= 1/-1 m=±i 2 + (3/2-) LU et same Yo = 0,0082 + 9,0in 2 $y_p = \frac{\phi(x)}{f(D)}$ $y_p = \frac{x}{D^2 + 1}$ 1+D $\mathcal{D}_{\mathcal{X}}$ yp = 1+02 yp = x y= yc+yp $y = c_1 \cos x + c_2 \sin x + x$ use the given conditions y(0)=y(1/2)=0 i.e y(0)=0 and y(1/2)=0 put 20=0 & y=0 in * $0 = C_{1} \cos(0) + C_{2} \sin(0) + 0$ $0 = C_1 = C_1 = 0$ put ag=0 and x=T/2 in R $0 = C_1 \cos \pi v_2 + C_2 \sin \pi v_2 + \pi v_2$ $0 = (0)(0) + C_2(1) + \pi/2$

 $C_{2} = -T_{2}$ - Nova PAGE NO. 41 put c, and c, in @ DATE y= (0) 10.8 x + Sin x (-17/2) + x y=- The sinx + x y the required were geodesics, A geodyic on a Surface is a cuque along which the distance between any two points of the surface y minimum Standard Vaniational problems O Pit the Shortest distance between and two points in a plane is along the smalt, smaight dine joining them or 18 prove that geodesics on a plane que straight lines. Soine Let y=y(x) be a cuarve joining P(x, y) and of (x2, y2) in the xoy plane. w.K.T the arc dength between p ando is given by $S = \int \frac{ds}{dx} dx$ $= \int_{1}^{1} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$

we need to find the carve y(DC). Such that I is minimum Cet, $f(x, y, y') = \sqrt{1 + (y')^2}$ Euler's equation $\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y^i} \right) = 0$ becomes $0 - \frac{d}{dx} \left[\frac{1}{\partial V + f(y')^2} \times \partial y' \right] = 0$ $\frac{d}{dx}\left[\frac{y'}{\sqrt{1+(y')^2}}\right] = 0 \quad (apply \ y' \ orule)$ $y'' \sqrt{1+(y')^2} - y' \frac{1}{p \sqrt{1+(y')^2}} = 0$ $\left(\sqrt{1+(y)^2}\right)^2$ $y''\sqrt{1+(y')^2} - (y')y'' \frac{1}{\sqrt{1+(y')^2}} = 0$ $y''(\sqrt{1+(y')^2})^2 - (y')^2 y''$ $\sqrt{1+(4')^2} = 0$ $y'' \left(\frac{1}{1+(y')^2} - y''(y')^2 = 0 \right)$

y"(1+(y')") - y"(y')" = 0 , " PAGE NO. " DATE 9" + 9"QY" - 9"B")" = 0 y"=0 dy =0 Integrate w.r. to x $dy = c_1$ goin integrate w.n. to x y=c, oc + c2 which is a straight line (a) Find geodesics on a Surface given une that are length on the surface x^{0} is $S = \int_{x^{2}}^{x^{2}} \sqrt{x(1+(4')^{2})} dx$ -June Boino we have f= V 20(i+(4))) which is independent of & : Euler's equation $\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$ $0 - \frac{d}{dx} \left(\frac{1}{\sqrt[3]{x(1+(4))}} \times \frac{x}{\sqrt[3]{y'}} \right) = 0$ $\frac{d}{dz}\left(\frac{zy'}{\sqrt{x(1+(y'))}}\right) = 0$

Integrate w.r. to
$$\infty$$

$$\frac{xcy'}{\sqrt{2c(1+G)^2}} = C$$

$$\frac{xy'}{\sqrt{x}/(1+G)^2} = C$$

$$\frac{xy'}{\sqrt{x}/(1+G)^2} = C$$

$$\sqrt{x} \frac{y'}{\sqrt{1+Gy}^2} = C$$

$$\sqrt{x} \frac{y'}{\sqrt{1+Gy}^2} = C$$

$$\sqrt{x} \frac{y'}{\sqrt{1+Gy}^2} = C$$

$$\sqrt{x} \frac{y'}{\sqrt{1+Gy}^2} = C^2 (1+(y')^2)$$

$$x(y')^2 = c^2 (1+(y')^2)$$

$$y' = c^2 (1+(y')^2)$$

$$y' = c^2 (1+(y')^2)$$

$$y' = c^2 (1+(y')^2 = c^2$$

$$(y')^2 (1+(y')^2)$$

$$(y')^2 (1+(y$$

y= 2 c V x - c2 + C, PAGE NO. y-q = 201x-c2 DATE (Call 1 1 1 S. m. B. S $(y-c_1)^2 = 2c^2(2c-c^2)$ NO. (y-g) = 4 c (x - c2) is the required geodgic which 1/ a parabola 3 P.T Catenary is the curve cohich when rotated about a dine generale a Surface of minimum aud Do yourgelf Soin: we have the expression for the total surface area given by Stryds where the curve is retated about x-axis. $: I = \int_{2\pi y}^{2\pi y} \frac{ds}{dx} dx$ = $\int_{0}^{\infty} 2\pi y \sqrt{1 + (dy)^2} dx$ x, $= \int^{\infty} 2\pi y \sqrt{1+(y)^2} dx$ x C. 25 Statestation

Since 21 is Constant we an ay well take f(x, y, y')= 1+(4) which is independent of 20 : It is convenient to take the Euler's equation in the form. f-y' Of = constant ie, $y\sqrt{1+(y')^2} - y' \cdot \frac{y}{\sqrt{1+(y')^2}} = C$ $y(\sqrt{1+(4')^2})^2 - (4')^2 y$ V1+(4')2 $Y(1+(y')^{2}) - Y(y')^{2} = CV (1+(y')^{2})^{2}$ $9 + 9(9)^{2} - 9(9)^{2} = CVI + (4')^{2}$ $Y = C \sqrt{1 + (y')^2}$ S. on B.S $y^{2} = c^{2} (v_{1} + (y')^{2})$ $y^{2} = C^{2}(1+(y')^{2})$ $y^{2} = c^{2} + c^{2} (y')^{2}$ $c^{2}(y)^{2} = y^{2} - c^{2} = (y')^{2} = \frac{y^{2} - c^{2}}{z^{2}}$

y'= V42-c2 S IS IS A RADE PAGE NO DATE $\frac{dY}{dx} = \frac{\sqrt{y^2 - c^2}}{c}$ $\frac{u\gamma}{\sqrt{y^2-c^2}} = \frac{1}{c} dx$ $\int \frac{dy}{\sqrt{y^2 - c^2}} = \frac{1}{c} \int dx + k$ $\cosh^{-1}(\frac{y}{k}) = \frac{x}{c} + k$ y=cosh(2/+K) y=ccosh(z+K) y= c cosh (x+ck) $y = Ccosh(\frac{x+a}{C})$ cohere a = kC, This is aCatenary Hanging Cable (chain) Problem 8 * A heavy Cable hangs freely under gravity between two fixed points gravity the Shape of the Cable is 8.T the Shape of the Cable is Dec 16 24 80100

POT(xx, 42) pilling store T gainyin TENDINELD PAGE NO. DATE 512 EV1973 y=h anot sell Let P(aci, yi) and on (aca, yz) be the two fixed points of the hanging cable - Let us consider an elementary arc length ds of the cable. Let f be the

density (mass/unit length) of the cable go that gds is the mass of the element If g is the acceleration due to gravity then the potential energy of the element (m.g.h) is given by (pds).g.y where x-axis is taken as the dine of refrance. Total potential energy of the Cable & given by $T = \int (p ds) \cdot q y dx$

 $= \int g g y \frac{ds}{dx} dx$

But $\frac{dS}{dx} = \sqrt{1+(4')^2}$ here, f(x, y, y)=(19) y V 1+(4)2 = const. y VI+(4')2

which is independent of x . It & convenient to PAGENO DATE take the Euler's equation in the form $f - y' \frac{\partial f}{\partial y'} = constant$ $y\sqrt{1+(y)^{2}} - y'\frac{y}{\sqrt{1+(y')^{2}}} = C$ $y\sqrt{1+(y)^2} - (y')^2 y$ $\sqrt{1+(y')^2} = C$ $4(1+(y)^{2})^{2}-(y)^{2}y$ V 1+(y')2 $y(1+(y)^{2}) - y(y)^{2} = C\sqrt{1+(y)^{2}}$ y + y(y)2 - y(y)2 = c V I + (y)2 $y = c \sqrt{1 + (y)^2}$ S. on B. S y2 = c2 (1+(y)2) $y^2 = c^2 + c^2 (y')^2$ $c^{2}(y')^{2} = y^{2} - c^{2}$ $(y')^{2} = \frac{y^{2} - c^{2}}{c^{2}}$ $y' = \sqrt{\frac{y^2 - o^2}{c^2}}$

Chaque Buepen y = 1 y - c Jelova - $\frac{dy}{dx} = \frac{\sqrt{y^2 - c^2}}{c}$ PAGE NO. of Siden at the $\frac{dy}{\sqrt{y^2 - \sigma^2}} = \frac{1}{c} dx$ 21 12:29 900 eller scalls " that works $\int \frac{1}{\sqrt{y^2 - c^2}} \, dy = \frac{1}{c} \int dx + K$ Cosh" (%) = 2/6 + K 4 = cosh(2/2 + K) y=ccosh(2/0+K) (mitrally at gyt) $y = c cosh\left(\frac{x + ck}{c}\right)$ $y = c cogh(\frac{x+a}{c})$ where a = Kcwhich is catenary Kinche energy at surf = Bow 22 /21) 02 (22) 10 21 = 884 12:01= 20 the vereatly of 3.13 the paint places. hence the fame a regeneed by the